The Fundamental Theory of Low Noise Oscillators with Special Reference to Some Detailed Designs IEEE Frequency Control Symposium Tutorial 6th June, 2000, Kansas City Jeremy KA Everard **Department of Electronics**

University of York

Presented at the 2000 IEEE Int'l Frequency Control Symposium Tutorials June 6, 2000, Kansas City, Missouri, USA

Low Noise Oscillators

- Oscillator models
- Noise theories for thermal (additive noise)
- Optimisation for minimum sideband noise
- Flicker noise measurement and reduction
- Oscillator designs
 - LC oscillators
 - SAW oscillators
 - Transmission line oscillators
- Tuning varactor limitations
- Non-linear CAD
- Detailed designs

Oscillator Models

OSCILLATOR THEORY

Model by Splitting original input into 2 identical inputs

One for noise injection

One for feedback

$$\frac{V_{OUT}}{V_{IN2}} = \frac{G}{1 - (\beta G)}$$

Model like Op-Amp with two inputs added and $\beta_0 G = 1$

Resonator Response

$$\beta = \left(\frac{R_{IN}}{R_{IN} + R_{OUT}}\right) \left(1 - \frac{Q_L}{Q_0}\right) \frac{1}{\left(1 \pm 2jQ_L \frac{df}{f_o}\right)}$$

Insertion loss increases as Q_L tends to Q_0

If $R_{OUT} = R_{IN}$ then the insertion loss of the resonator is $S_{21} = 2\beta$, therefore:

 $S_{21} = 6dB$ when $Q_L/Q_0 = 1/2$

$$S_{21} = \left(1 - \frac{Q_L}{Q_0}\right) \frac{1}{\left(1 \pm 2jQ_L \frac{df}{f_o}\right)}$$

 $S_{21} = 9dB$ when $Q_L/Q_0 = 2/3$

Resonator response versus $Q_L/Q_0 = 0.1, 0.5, 2/3, 0.9$

At resonance Δf is zero and V_{OUT}/V_{IN2} is very large

simplifies to:

$$\frac{V_{OUT}}{V_{IN2}} = \frac{G}{\pm 2jQ_L\frac{\Delta f}{f_o}} = \frac{1}{\left(1 - Q_L/Q_0\right)\left(\frac{R_{IN}}{R_{OUT} + R_{IN}}\right)\left(\pm 2jQ_L\frac{\Delta f}{f_0}\right)}$$

Noise in terms of power in 1Hz BW

- Calculate input noise power in 1Hz BW
 initially calculate square of I/P voltage
- Assume O/P power limited

– or at least always calculate in terms of O/P \ast

- Equation starts to break down very close to carrier at offsets typically << 1Hz
 - this is not usually a problem

$$V_{IN} = \sqrt{FkTR_{IN}} \qquad \text{Noise input}$$
$$(V_{OUT} \Delta f)^2 = \frac{FkTR_{IN}}{4(Q_L)^2 (R_{IN}/(R_{OUT} + R_{IN}))^2 (1 - Q_L/Q_0)^2} \left(\frac{f_o}{\Delta f}\right)^2$$

Separate constants and variables

$$(V_{OUT} \Delta f)^{2} = \frac{FkTR_{IN}}{4(Q_{0})^{2} (Q_{L}/Q_{0})^{2} (R_{IN}/(R_{OUT} + R_{IN}))^{2} (1 - Q_{L}/Q_{0})^{2} (\frac{f_{o}}{\Delta f})^{2}}$$

$$L_{FM} = \frac{\left(V_{OUT} \ \Delta f\right)^{2}}{\left(V_{OUT \ MAX \ RMS}\right)^{2}}$$
$$L_{FM} = \frac{FkTR_{IN}}{8(Q_{0})^{2} (Q_{L}/Q_{0})^{2} (1 - Q_{L}/Q_{0})^{2} (R_{IN}/(R_{OUT} + R_{IN}))^{2} (V_{OUT \ MAX \ RMS})^{2}} \left(\frac{f_{O}}{\Delta f}\right)^{2}$$

Define power P_{AVO} or P_{RF}

Noise spectrum of oscillator

$$P_{RF} = \frac{\left(V_{OUT \ MAX \ RMS}\right)^{2}}{R_{OUT} + R_{LOSS} + R_{IN}}$$
$$L_{FM} = \frac{FkT(R_{OUT} + R_{IN})^{2}}{8(Q_{0})^{2} (Q_{L}/Q_{0})^{2} R_{IN} (1 - Q_{L}/Q_{0})^{2} P_{RF} (R_{OUT} + R_{LOSS} + R_{IN})} \left(\frac{f_{O}}{\Delta f}\right)^{2}$$

The ratio of sideband noise in a 1Hz BW at R_{OUT} just
dissipatesoffset Δ fto the total power is therefore:power!

$$L_{FM} = \frac{FkT}{8(Q_0)^2 (Q_L/Q_0)^2 (1 - Q_L/Q_0)P_{RF}} \left(\frac{R_{OUT} + R_{IN}}{R_{IN}}\right) \left(\frac{f_0}{\Delta f}\right)^2$$

©2000 JKA Everard, University of York

 ~ 2

/

If R_{OUT} is zero as in a high efficiency oscillator

$$L_{FM} = \frac{FkT}{8(Q_0)^2 (Q_L/Q_0)^2 (1 - Q_L/Q_0)P_{RF}} \left(\frac{f_0}{\Delta f}\right)^2$$

If $R_{OUT} = R$ in

Most amplifiers have similar I/P and O/P impedance

$$L_{FM} = \frac{FkT}{4(Q_0)^2 (Q_L/Q_0)^2 (1 - Q_L/Q_0)P_{RF}} \left(\frac{f_0}{\Delta f}\right)^2$$

Power available at the output P_{AVO} then:

$$P_{AVO} = \frac{\left(V_{OUT \ MAX \ RMS}\right)^{2}}{4 R_{OUT}}$$

$$L_{FM} = \frac{FkT}{32(Q_{0})^{2} (Q_{L}/Q_{0})^{2} (1 - Q_{L}/Q_{0})^{2} P_{AVO}} \left(\frac{(R_{OUT} + R_{IN})^{2}}{R_{OUT} \cdot R_{IN}} \left(\frac{f_{O}}{\Delta f}\right)^{2}$$

$$\left(\frac{\left(R_{OUT} + R_{IN}\right)^2}{R_{OUT} \cdot R_{IN}}\right) = 4 \quad \text{minimum when } R_{OUT} = R_{IN}$$

If $R_{OUT} = R_{IN}$

$$L_{FM} = \frac{FkT}{8(Q_0)^2 (Q_L/Q_0)^2 (1 - Q_L/Q_0)^2 P_{AVO}} \left(\frac{f_0}{\Delta f}\right)^2$$

General equation which describes all three cases

$$L_{FM} = A \cdot \frac{FkT}{8 (Q_0)^2 (Q_L/Q_0)^2 (1 - Q_L/Q_0)^N P} \left(\frac{f_0}{\Delta f}\right)^2$$

1. N = 1 and A = 1 if P is defined as P_{RF} and $R_{OUT} = zero$

2. N = 1 a nd A = 2 if P is defined as P_{RF} and $R_{OUT} = R_{IN}$

3. N = 2 and A = 1 if P is defined as P_{AVO} and $R_{OUT} = R_{IN}$

The effect of the load

- Load not included so far
- Incorporate as coupler/attenuator at O/P of amplifier which causes:
 - Reduction in open loop gain
 - Increase in amplifier noise figure
 - NB Closed loop gain does not change as this is set by the insertion loss of the resonator
- Effect of load reduced if amplifier has zero/low O/P impedance

Optimisation for minimum noise

• The amplifier gain and resonator loaded Q are directly linked:

$$S_{21} = (1 - Q_L / Q_0)$$

- The noise factor is also dependent on loaded Q due to the change in source impedance
 - This is a second order effect and will be considered later

OPTIMISATION FOR MINIMUM NOISE

$$L_{(fm)} = \frac{FKT}{8Q_0^2 (Q_L/Q_0)^2 (1 - Q_L/Q_0) PFED} \times \left[\frac{f_0}{\delta f}\right]^2$$

For minimum noise if F is constant

 $\frac{\delta \left(L_{(fm)} \right)}{\delta \left(Q_{L} / Q_{o} \right)} = O$

MINIMUM NOISE OCCURS WHEN: $Q_L / Q_0 = 2/3$ and G = 3

Sideband noise v. Q_L/Q_o

Noise vs QL/Qo

What happens if the power that is limited is defined as Power available at the input of the amplifier

The noise equation now becomes

but the gain has now disappeared

One therefore expects that Q_L should be high and made close to Q_O

However if QL tends to Qo,

the amplifier gain and hence power have to be

Infinite

High efficiency 1GHz oscillator

Figure 4 High Q Class E amplifier Load Network

Figure 5, PCB layout

Figure 14 Phase Noise Performance of Optimised Oscillator

Figure 11 Noise Figure Measurement System.

Double transmission line filter

Flicker noise: measurement and reduction

⁴⁰

FLICKER NOISE PRODUCES NOISE DEGRADATION IN OSCILLATORS

NOISE PERFORMANCE OF GaAs OSCILLATOR

Ev

FLICKER NOISE MODEL

FLICKER NOISE MEASUREMENT SYSTEM

03-14-1990 b:f3pm3.DAT

pm 200-2KHz

1

9

X: 0 to 20.4ms. Y: CH.1: -140mV to 138.mV. CH2: -28mV to 27.7mV.

am 200-2KHz

.

CURRENT METHODS FOR TRANSPOSED FLICKER NOISE REDUCTION

- 1. Direct LF reduction
- 2. RF Detection and LF Cancellation
- 3. Transposed Gain Amplifiers
- 4. Feedforward Amplifiers

DIRECT LF REDUCTION

Noise reduction was discussed by Riddle and Trew, 1985, who designed the amplifier using a pair of FETS operated in push pull at the microwave frequency but operated in parallel at low frequencies via a low frequency connection between the two bias networks.

Pringent and Obregon, 1987, used a bias network with a low frequency negative feedback. This reduced the device gain at low frequencies and at the same time reduced the baseband and transposed flicker noise. This assumed that the majority of the Flicker noise was generated by a gate noise source modulating the input non linear capacitor of the GaAs Fet.

An elegant implementation of the same idea was produced by Mizukami et al 1988 who developed a GaAs mmic in which the impedance presented to the source was arranged to rise at low frequencies. This method would be more difficult to implement with discrete FETs as the parasitics need to be very low indeed.

These methods have all reduced the low frequency flicker noise present at the device terminals, but this often does not necessarily correlate well with the oscillator flicker noise reduction. The transposed flicker noise depends on the nature of the internal noise sources, and the transposition mechanism. All of these vary greatly between device manufacturers.

Flicker Noise Reduction in GaAs Oscillators Z.Galani, M.J. Bianchini, R.C. Waterman, R. Dibiase, R.W Laton and J.B. Cole, IEEE Trans. MTT 32 1984

Ultra low noise frequency discriminator for lowest noise X band oscillators - Ivanov, Tobar and Woode [32], [33]

Wide Bandwidth Flicker Noise Reduction in GaAs Amplifiers M. Driscoll, FCS 1995

Amplifier Module 10kHz to 200MHz

1

8

.....

White with hills

21±0.5dB Gain P_{1dB}10dBm Noise temp<250K delay 1.3nS (inverting) 15-24VDC@60mA

Phase Noise Performance

- $F_0 = 7.6 GHz$
- $Q_0 = 44,000$
- $P_{AVO} = 8 dBm (6.3 mW)$
- Noise Figure = 15dB including image noise
- Flicker noise corner ~ 1kHz
- $L_{FM} = -136 dBc@10 kHz$ (theory -139dBc)

Problems with TGO

O/P power max ~ 8dBm NF ~ 15dB Therefore use FEEDFORWARD

Residual flicker noise reduction in 1 Watt GaAs Feedforward Amp Broomfield and Everard FCS 2000

Oscillator designs

- LC
- SAW
- Transmission Line
- Helical
- Tuning
- Detailed designs
 LC
 - Transmission line

VID AVG 30, RES BW 300 Hz, VBW 300 Hz, SWP 1.0s. Oscillator phase noise against frequency.

SURFACE ACOUSTIC WAVE RESONATOR

Interdigital Transducers

. ...

-

Reflector

Reflector

262MHz Surface Acoustic Wave Oscillator

262 MHz SAW Oscillator

• Phase noise performance of -130dBc/Hz at 1kHz offset - limited by measurement

 Montress, Parker, Loboda and Greer [20] demonstrated high power 500MHz SAW oscillators with -140dBc/Hz at 1kHz offset

TRANSMISSION LINE OSCILLATOR

Frequency Response of Resonator

Close to the resonant peak and for small αL (< 0.05) and $\delta f/f_0 << 1$, $f_0 = (v_{eff}/2L)\{ 1 + (1/\pi)tan^{-1}(2/X)\},$ $f_0 = resonant$ frequency and $\delta f = f - f_0$ $S_{21}(\delta f) = S_{21}(0)/\{1 + j2Q_L(\delta f/f_0)\}$ $S_{21}(0) = 1/\{1 + (\alpha L/2)X^2\}$ $Q_L = \pi S_{21}(0)X^2/4$

From the last two equations it can be seen that the insertion loss and the loaded Q factor of the resonator are interrelated.

As the shunt capacitors (assumed to be lossless) are increased the insertion loss increases towards <u>infinity</u> and Q_L increases to a <u>limiting value of $\pi/2\alpha L$ </u> which we will define as Q_0 .

Noise performance of 1.5GHz Osc.

- $Q_0 = 83$, $\alpha l = 0.019$, substrate $\mathcal{E}_r 10$
- O/P power = 3.1dBm
- Noise Figure = 3dB
- Noise performance = -104dBc/Hz @ 10kHz
- Within 2dB of the theory

HELICAL RESONATOR OSCILLATOR

HELICAL RESONATOR

Helical Resonator

Helical resonator oscillators [22]

- 900 MHz, $Q_0 = 582$
- O/P power = 0 dBm
- Noise Factor = 6dB
- Noise performance =
- -127dBc/Hz @ 25kHz
- Within 2dB of theory

- 1.6GHz, $Q_0 = 382$
- O/P power = 0dBm
- Noise Figure = 3dB
- Noise performance =
- -120dBc/Hz @ 25kHz
- Within 2dB of theory

 Z_0 of helix = 340 Ω measured using Time Domain Reflectometry

STRIPLINE RESONATOR

EQUIVALENT CIRCUIT

 $Q_0 > 500$ at 5GHz on low loss $\mathcal{E}_r 2.5$ PCB $Q_0 = 380$ at 4.8 GHz on $\mathcal{E}_r 10$ [23] results without screening, therefore near zero radiation loss

5 section 4.5GHz bandpass filter on $E_{r}10$ [23]

low radiation loss

spurious out of band waves exist

Tuning: Varactor Limitations

OSCILLATOR TUNING - 2 Main types

1. Tunable Resonators Offers broadband and narrowband tuning.

For low noise reduce loading caused by varactor to minimum

Noise degradation due to varactors Power calculation by - Underhill [25]

- Power dissipated in varactor loss resistor, rs, is: $P = (V_{RS})^2 / rs$
- The voltage across the capacitor in the resonator is: $V_C = QV_{rs}$
- Therefore the power dissipated in the varactor is: $P_V = V_C^2/Q^2 rs$
- The noise power in oscillators is proportional to $1/PQ_0^2$

• The figure of merit (V_c^2/rs) should therefore be as high as possible

• Optimum performance obtained for large voltage handling characteristics and small series resistances in varactor

Apply this using new noise equations

• If P is defined as P_{AVO} , $Q_L/Q_0 = 1/2$ and $R_{out} = R_{in}$: then A= 1 and N = 2 then

$$L_{FM} = \frac{2FkT}{Q_0^2 P_{AVO}} \left(\frac{f_0}{\Delta f}\right)^2 \qquad \left[As \left(L_{FM} = A \cdot \frac{FkT}{8(Q_0)^2 (Q_L/Q_0)^2 (1-Q_L/Q_0)^N P} \left(\frac{f_0}{\Delta f}\right)^2\right)\right]$$

• As
$$P_{AVO} = 2P_V$$
 then $L_{FM} = \frac{FkTrs}{V_C^2} \left(\frac{f_0}{\Delta f}\right)^2$

Noise performance only dependant on V_C and rs

Example

 A varactor with a series resistance of 1Ω with an RF voltage of 0.25V rms at a frequency of 1GHz.

• The noise performance at 25kHz offset is -97dBc for an amplifier noise figure of 3dB

Improved by

- Reducing the tuning range by coupling varactor into resonator more lightly
- switching in tuning diodes using PIN diodes
- Increased voltage handling using back to back diodes
- improving the varactor

Varactor bias noise

- Flat noise spectral density on bias line causes (1/Δf)² noise in oscillator - same as thermal noise in oscillator -
- For low level modulation:

$$L_{FM} = \frac{\left(K_F V_M\right)^2}{\left(2F_M\right)^2}$$

 K_F = tuning sensitivity, Hz/Volt V_M = noise voltage, Volts/ \sqrt{Hz} F_M = offset frequency, Hz

Bias resistor noise $\frac{2}{e_n} = 4kTBr_b$

- Keep bias resistor value low
 - less than few hundred ohms eg 50Ω
- Use this to advantage in resonator design to suppress unwanted higher order resonances

TUNABLE TRANSMISSION LINE RESONATOR

3-6GHz resonator (5mm) on alumina Two Alpha diodes CVE7900D C_{j0} =1.5pf, Q (-4V, 50MHz) = 7000 k (capacitance ratio) = 6 [26], [27] Insertion loss and Q vs frequency, 3-6GHz resonator

2 x 1 mm

8.4 - 9.8GHz GaAs MMIC resonator [27] Variation of Q_L/Q_0 and S_{21} vs frequency

NOISE DEGRADATION DUE TO OPEN LOOP PHASE ERROR

Effects of open loop phase error [24]

- Always oscillate at N*360°
- Resonator Q degradation as $Q \propto d\phi/d\omega$
- Insertion loss and hence gain increase
- Causes $Cos^4 \phi$ degradation in noise performance
- 45° causes 6dB noise degradation
- eg: At 10GHz with DRO Q=10,000, 1MHz offset causes 6dB degradation

Non linear CAD for oscillators

Non Linear CAD

- Break Circuit at short circuit point
- Place current source and frequency dependent resistor at this point
- Make resistor:
 - » Open circuit at fundamental
 - » Short circuit at harmonics
- Adjust amplitude and fundamental frequency of current source to obtain zero volts.

OPTIMISATION TECHNIQUE

$Z_{\omega} = O/C$ at fundamental and S/C at harmonics

TYPICAL OSCILLATOR CIRCUIT

Comparison of computed and measured data

	Predicted	Measured
Resonant Frequency	5.47 GHz	5.41 GHz
Ids	26.5 mA	24.0 mA
Vgs	-0.58 V	-0.53 V
Fundamental	9.3 dBm	8.6 dBm
1 st harmonic	- 14.7 dBm	- 17 dBm
2 nd harmonic	- 20.1 dBm	- 24 dBm

Measurement of coil Q

Adjust coil overlay to obtain low coupling

Place tuned circuit in between coils and measure response

raise to reduce coupling to obtain Q₀

Summary - low phase noise

- High unloaded Q and low noise figure
- Set resonator coupling to achieve $Q_L/Q_0 = 1/2 \rightarrow 2/3$
- Set the open loop phase error to be N.360
- Use a device and circuit configuration producing the lowest transposed flicker noise corner ΔF_C

Summary - low noise tuning

- Incorporate varactor loss resistor into resonator and set Q_L/Q_0 as before
- For narrow band tuning
 - loosely couple varactor into resonator and set Q_L/Q_0 as before or consider
 - low loss phase shifter in the feedback loop.
 Expect 6dB noise degradation if open loop phase error goes to 45 degrees
- Arrange for low bias line noise eg $r_b=50\Omega$

LC Design Example

Design Example

Design a 150 MHz oscillator using:

1. 235nH inductor with a Q_0 of 300.

2. An inverting amplifier with an input and output impedance of 50Ω
An LC resonator with losses can be represented as an LCR resonator as shown in Figure 24.

Figure 24 Model of LC resonator including losses

As
$$Q_0 = \frac{\omega L}{R_{loss}}$$

The equivalent series resistance is 0.74Ω .

Assuming the amplifier has an O/P impedance $R_{\text{out}},$ The ratio Q_L/Q_0 is:

$$\frac{Q_L}{Q_o} = \frac{R_{loss}}{R_{loss} + R_{in} + R_{out}}$$

For $R_{in} = R_{out}$

$$\frac{Q_L}{Q_o} = \frac{R_{loss}}{R_{loss} + 2R_{in}}$$

Let
$$\frac{Q_L}{Q_o} = \frac{1}{2}$$
 as the P_{AVO} definition can be used.

then
$$R_{loss} = 2 R_{in}$$
 then $R_{in} = \frac{R_{loss}}{2}$

Therefore $R_{in} = R_{out} = 0.37\Omega$ as shown in Figure 25.

Figure 25 LC resonator with scaled source and load impedances

111

As amplifier has 50Ω input and output impedances:

Use LC transformer as shown in Figure 26.

Figure 26 LC transformer to convert to 50Ω

The equations for the series and shunt components are:

$$Q_s = Q_p = \sqrt{\left(\frac{R_p}{R_s} - 1\right)}$$

The Q of the series component is:

The Q of the shunt component is:

$$Q_p = \frac{R_p}{X_p}$$
 Note:

 R_p = shunt resistance

 $R_{\rm S}$ = series resistance

 $X_{s} = \text{series reactance} = j\omega L$ $X_{p} = \text{shunt reactance} = \frac{1}{j\omega c}$

$$Q_s = Q_p = \sqrt{\left(\frac{R_p}{R_s} - 1\right)} = \sqrt{\left(\frac{50}{0.37} - 1\right)} = 11.58$$

$$X_s = 4.28 = j\omega L$$

L = 4.5 nH

$$X_{\rm p} = 4.31 = \frac{1}{j\omega C}$$

C = 246 pf

Incorporate 2 transforming circuits into resonator circuit as shown in Figure 27

Figure 27 LC resonator with impedance transformers

As the total inductance is 235nH, the part that resonates with the series capacitor is reduced by 9nH as shown in Figure 28.

Figure 28 Resonator with total L = 235nH

It is now necessary to calculate the resonant frequency.

The part of the inductance which resonates with the series capacitance is reduced by the matching inductors to:

 $235nH - (2 \times 4.5 nH) = 226 nH$

The circuit now becomes:

Note the value of shunt capacitors: 246pf!

Figure 29 Final resonator circuit

Simulation of insertion loss, S_{21} , of resonator

Effect of parasitic components

- What is the effect of the parasitics in the shunt capacitors
- Investigate the effect of both a 1nH and 2nH parasitic inductance
- This increases the effective capacitance as close to resonance (reduces impedance)

Effect of parasitic inductance in shunt C Yellow = 1nHGreen = 2nH - correct for this by reducing C from 246pf to 174pf Note the phase shift at resonance is 180°.

So the amplifier should provide a further 180°.

If necessary a phase shifter should be included to ensure N x 360° at the peak in the resonance as shown in Figure 30.

Figure 30 Oscillator incorporating phase shifter

1 GHz Transmission Line Osc.

• Design a 1GHz Transmission line Oscillator use 1.5mm FR4 PCB, $Z_0 = 50\Omega$, $\varepsilon_{eff} = 3.3$

Find loss of line

- Measure loss of known length of line OR
- Build a number of resonators with varying Q_L . Extrapolate to Q_0 by drawing straight line as $S_{21} = (1 Q_L/Q_0)$
- Simulate using field model
- Note that the loss of 'low loss' transmission lines can be deduced from resonator measurements

Calculate parameters

- From measurement $Q_0 = 39.3$
- $\alpha L = 0.04$
- For $_{\rm L}/Q_0 = 1/2$ $X = \sqrt{\frac{2}{\alpha L}}$
- X = 7.07 therefore as X= $2\pi f_0 C Z_0 = -Z_0/2\pi f_0 l$ - inductor l = 1.125nH
 - capacitor C = 22.5pf
- $L = \left(\frac{V_{eff}}{2f_0}\right) \left(1 + \left(\frac{1}{\pi}\right) \tan^{-1} \sqrt{2\alpha L}\right)$
- Line length=7.53cms for 1 and 8.98cms for C

Transmission line resonator response using shunt inductor

Acknowledgements

- I would like to thank the UK Engineering and Physical Sciences Research Council for supporting this work.
- I would also like to thank Paul Moore at Philips research laboratories who, some 16 years ago, started me in the right direction and I also thank Jens Bitterling, Carl Broomfield, Michael Cheng, Frazer Curley, Paul Dallas and Mike Page-Jones for their help in generating new ideas and results

REFERENCES

- 1. T.E. Parker, 'Current developments in SAW oscillator stability', Proceedings of the 31st Annual Symposium on Frequency Control, Atlantic City, NJ, USA, 1977, pp.359-364.
- 2. J.K.A. Everard "Low Noise Power Efficient Oscillators: Theory and Design" IEE Proceedings Part G, Vol. 133, No.4, August 1986, pp. 172-180.
- 3. Editors D. Haigh and J.K.A. Everard. "Gallium Arsenide Technology and its Impact on Circuits and Systems". Published by Peter Peregrinus Ltd., August 31st 1989. Chapter 8 (J.K.A. Everard) on Low noise oscillators, pp. 237-280.
- 4. J.K.A. Everard "Minimum Sideband noise in oscillators"Proceedings of the 40th Annual Symposium on Frequency Control, 28th-30th May 1986, Philadelphia, USA, pp.336-339.
- 5. W.P. Robins, "Phase Noise in Signal Sources" ISBN 0-906048-76-1, 1982 IEE Peter Peregrinus Ltd
- 6. J.K.A. Everard and J. Bitterling "Low Phase Noise Highly Power Efficient Oscillators" 1997 IEEE International Frequency Control Symposium, May 27th-30th 1997, Orlando, USA.
- 7. P.A. Moore and S.K. Salmon, "Surface Acoustic Wave reference Oscillators for UHF and Microwave Generators", IEE Proc. H, Microwave, Opt. & Antenna, 1983, 130, (7), pp477-482.
- 8. T.E. Parker, " Characteristics and sources of phase noise in stable oscillators". 41st Annual frequency control symposium 1977.pp.99-110.
- 9. G.Montress, T.E. Parker, M.J. Loboda, 'Residual phase noise measurements of VHF, UHF, and microwave components' Proceedings of the 43rd Annual Frequency Control Symposium 1989.
- Z.Galani , M.J. Bianchini, R.C. Waterman, R. Dibiase, R.W Laton and J.B. Cole "Analysis and design of a single-resonator GaAs FET oscillator with noise degeneration" IEEE Transactions on Microwave Theory and techniques, Vol MTT-32 No. 12 pp 1556-1565 Dec. 1984
- 11. M.M. Driscoll and R.W. Weinert' "Spectral Performance of Sapphire Dielectric Resonator-controlled Oscillators operating in the 80K to 275K temperature range, 1995 IEEE FCS, pp.401-412.
- 12. A.N. Riddle, and R.J. Trew, 'A new method of reducing phase noise in GaAs FET oscillators', IEEE MTT-S Digest 1984, pp.274-276.
- M. Pringent and J. Obregon, 'phase noise reduction in FET oscillators by low-frequency loading and feedback circuitry optimization', IEEE Trans. Microwave Theory Tech., vol.MTT-35, no.3, March 1987, pp.349-352.
- 14. H. Mizzukami et al. " A high quality GaAs IC tuner for T.V./V.C.R receivers " IEEE Transactions on Consumer Electronics Vol. CE-34 No. 3 pp 649-659 Aug.1988.
- 15. P.A. Dallas and J.K.A. Everard. "Measurement of the Cross Correlation between Baseband and Transposed Flicker Noises in a GaAs MESFET". IEEE Microwave Theory and Techniques Conference, Dallas USA, May 1990, pp. 1261-1264.

- 16. P.A. Dallas "Determining the Sources of Flicker Noise in GaAs MESFETs", PhD Thesis, 1995, Kings College London.
- J.K.A. Everard and M.A. Page-Jones, "Ultra Low Noise Microwave Oscillators with Low Residual Flicker Noise", IEEE International Microwave Symposium, Orlando May 16th -20th 1995, pp. 693-696.
- 18. J.K.A. Everard and M.A. Page Jones "Transposed Gain Microwave Oscillators with Low Residual Flicker Noise, Frequency Control Symposium, San-Fransisco June 1995, pp. 374-378.
- 19. M.A. Page-Jones and J.K.A. Everard. "Enhanced Transposed Gain Microwave Oscillators". European Frequency and Time Forum, 5th to 7th March, Brighton 1996, pp.275-278.
- G.Montress, T.E. Parker, M.J. Loboda, J.A. Greer. "Extremely low phase noise SAW resonators and Oscillators: Design and Performance. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol 35, No.6, November 1988. pp.657-667.
- 21. J.K.A. Everard and K.K.M. Cheng. "Novel Low noise 'Fabry Perot' transmission line oscillator". IEE Electronics Letters, 17th August 1989, Issue 17, Vol. 25, pp.1106-1108.
- 22. J.K.A. Everard, K.K.M. Cheng and P.A. Dallas. "A High Q Helical Resonator for Oscillators and Filters in Mobile Communications Systems" IEE Electronics Letters, 23rd November 1989, Vol. 25, No.24, pp. 1648-1650.
- J.K.A. Everard and K.K.M. Cheng. "High performance Direct Coupled Bandpass filters on Coplanar Waveguide".IEEE Transactions on Microwave Theory and Techniques. September 1993, Vol. 41, Number 9, pp.1568-1573.
- 24. K.K.M. Cheng and J.K.A. Everard."Noise Performance Degradation in Feedback oscillators with non zero phase error", Microwave and Optical Technology Letters. Vol.4, No.2, 20 Jan 1991, pp.64-66.
- 25. M.J. Underhill, 'Oscillator noise limitations', IERE Conf. Proc. 39, 1979, pp.109-118.
- 26. K.K.M. Cheng and J.K.A. Everard. "Novel varactor tuned transmission line resonator". IEE Electronics Letters, 17th August 1989, Issue 17, Vol. 25, pp.1164-1165.
- 27. K.K.M. Cheng and J.K.A. Everard "X band Monolithic Tunable Resonator/Filter". IEE Electronics Letters, 9th November 1989, Vol.25, No.23, pp.1587-1589.
- R.D. Martinez, D.E. Oates, R.C. Compton, "Measurements and model for correlating phase and baseband 1/f noise in an FET, IEEE Trans. Microwave Theory and Technique, vol.42, pp.2051-2055, Nov.1994.
- P.A. Dallas and J.K.A. Everard "Characterisation of flicker noise in GaAs MESFETs for oscillator applications. IEEE Trans. Microwave Theory and Techniques, Vol.. 48. No.2, February 2000, pp. 245-257.
- A.N. Riddle and R.J. Trew, "A new measurement system for oscillator noise characterisation,"1987 IEEE-MTT-S Int. Microwave Symp. Dig., 1987, pp.509-512.

- 31. K.H. Sann, "The measurement of near carrier noise in microwave amplifiers" IEEE Trans. Microwave Theory and Tech., vol.16, pp.761-766, Sep. 1968
- E.N Ivanov, M.E. Tobar and R.A.Woode "Ultra-Low-Noise Microwave Oscillator with Advanced Phase Noise Suppression System" IEEE Microwave and Guided Wave Letters., vol.6, No.9 pp.312-314, Sep. 1996
- E.N Ivanov, M.E. Tobar and R.A.Woode "Applications of Interferometric signal Processing to Phase-Noise Reduction in Microwae Oscillators" IEEE Trans. Microwave Theory and Tech., vol.46, No.10 pp.1537-1545, Oct.1998
- Walls, Ferre-Pikal and Jefferts., "Origin of 1/f PM and AM Noise in Bipolar Junction transistor Amplifiers"IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 44, pp.326-334, March 1997.
- E.S Ferre-Pikal, F.L. Walls and C.W. Nelson, "Guidelines for designing BJT Amplifiers with Low 1/f AM and PM Noise" IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 44, pp.335-343, March 1997.
- D.G. Santiago and G.J. Dick "Microwave Frequency Discriminator with a Cooled Saphire REsonator for Ultra-Low Phase Noise" 1992 IEEE frequency Control Symposium, Hershey Pennsylvania May 1992, pp.176-182.
- D.G. Santiago and G.J. Dick "Closed Loop Tests of the NASA Sapphire Phase stabiliser" 1992 IEEE frequency Control Symposium, Hershey Pennsylvania May 1992, pp.176-182.
- 38. M.C D. Aramburo, E.S. Ferre-Pikal, F.L. Walls and H.D. Ascarrunz, "Comparison of 1/f PM noise in commercial amplifiers". 1997 IEEE Frequency Control Symposium. Orlando, Florida, pp.470-477.
- 39. J.K.A. Everard "A Review of Low Phase Noise Oscillator Design" 1997 IEEE International Frequency Control Symposium, May 28th 30th 1997, Orlando, USA. pp909-918.
- K.K.M. Cheng and J.K.A. Everard, "A New and Efficient Approach to the Analysis and Design of GaAs MESFET Microwave Oscillators" IEEE International Microwave Symposium, Dallas TexasMay 8th -16th 1990, pp. 1283-1286.
- F.M. Curley "The Application of SAW Resonators to the Generation of Low Phase Noise Oscillators" MSc. Thesis, King's College London 1987.
- 42. A. Hajimiri and T.H.Lee "A General Theory of Phase Noise in Electrical Oscillators", IEEE Journal of Solid State Circuits, Vol. 33, No. 2, February 1998, pp. 179 194.
- D.B. Leeson, "A simple model of Feedback Oscillator Noise Spectrum" Proc. IEEE, vol.54, pp. 329-330. Feb.1966.
- 44. L.S. Cutler and C.L. Searle, "Some Aspects of the theory and measurement of frequency fluctuations in Frequency Standards", Proc. IEEE, vol.54, pp.136-154. Feb.1966.