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LLow Noise Oscillators

e Oscillator models

* Noise theories for thermal (additive noise)
e Optimisation for minimum sideband noise
* Flicker noise measurement and reduction

e Oscillator designs
— LC oscillators
— SAW oscillators
— Transmission line oscillators

e Tuning - varactor limitations
* Non-linear CAD
o Detaliled designs

©2000 JKA Everard, University of York



Spectrum of Oscillator
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Oscillator Models
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Block model of oscillator
FKT F.G

PAVO

PAVI

Resonator
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Model by Splitting

OSCILLATOR THEORY original input
Vi Into 2 identical
(noise) —» iﬂpUtS
v T3 One for noise
Injection
(Feedback) 4 | =
One for
_H -yl feedback
VOUT G Model like

VIN2 1- (ﬁG) P

with two Inputs
added and 3,G =1
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Model of Resonator

—000" .
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Resonator Response

5 R\ Q, 1 Insertion loss
— 1 _ i
= : INCreases as
D + R
Tin T Rour Qo T4 2jQ, (;I:f Q, tends to Q
If Rout = Ry then the insertion loss of the S,; = 6dB
resonator is S,; = 23, therefore: when
S — _ QL 1 d
2 S,, = 9dB
. df 21
QO + 2 JQL f when
0 Q. /Q, =2/3
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Insertion loss vs Q,
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At resonance Af 1s zero and Vout/Vin2 IS Very large

Vour — G _ 1
VIN2 1- 1 df El H
B0 H (oo 0)H Ru =
JQ fo% R e S JQ df
- LTo

Interested In noise

/ “sKirts’

simplifies to:
Voor . G _ 1
V A\ R . I
ME2IQ T (1-QU/Q)E L HE 2iQ
0 Rour + R fo
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Noise in terms of power in 1Hz BW

 Calculate Iinput noise power in 1Hz BW
— Initially calculate square of I/P voltage

o Assume O/P power limited
— or at least always calculate in terms of O/P *

« Equation starts to break down very close to
carrier at offsets typically << 1Hz

— this i1s not usually a problem
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Viy =+/FKTR,,  noiseinpu

2

FKTR,,

Vo 81) =

QL )2 (RIN /(ROUT + Ry ))2 (1 - Q /Qo)2 A

Separate constants and variables

FKTR,,

Wour 81) = 4(Q,) (

QL/Q) (Riv/(Rour + R ) (1 - Q/Q, ) (A 5
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AM AM PM
~ w
4—1—» PM N ‘>
"

AM and PM noise
model

2 FkTRIN :O
Vour £) 3 8(Qy) (QL/Qe) (Riy /(Rour +Ry ) @ - Q_/Q, ) LA %

©2000 JKA Everard, University of York



= Vo AF)
FM
(\/OUT MAX RMS )2

FKTR, ife
8(Q0)” (Qu/Q) (- Qu/Qs ) R /(Rour + R ) Vour e | [2A¢

Lev =

Define power Pavo Or Prr
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T Amplitude

1HzZ
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AT
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Noise spectrum of oscillator

O/P power
| Sideband noise remains constant
- for a given
loaded Q and amplifier noise figure
Noise floor at O/P

= GFkT/2
|

B | >

3dB BW of resonator
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2
6/OUT MAX RMS )

Per = >~ IR TR
OuT LOSS IN
L. = FKT (ROUT + RIN )2 f 0
- 8(Q0 )2 (QL/QO )2 Rin (1 - QL/QO )2 P.e (ROUT + R 0ss TRy ) Af

The ratio of sideband noise ina 1Hz BW at our U
dissipates
offset Afto the total power is therefore: power!
2
FKT our TR f 0

Ley =

8(Q0 )2 (QL /Q, )2 (1 -Q./Q, )PRF Rix Af
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If RoyT IS zero as in a high efficiency oscillator

o FKT flg
M 8(Qe ) (Qu/Q) (- Qu/Q P [
R _ Most amplifiers have
OUT=RIN " similar I/P and O/P impedance
2
e FKT flo
T 4Q0) (Qu/Qe) (- QL/Q )P [

2
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Power available at the output Payo then: 71

2
_ 6/OUT MAX RMS )

P, =
e 4 I:\)OUT

L., = FkT EFOUT +Ryy )2 l: o
™ 32(Q, ) (Qu/Qy) (1 - QL /Qy ) Pavo HHRour- R (i

ROUT T RIN )2 =—_4
Rour -Riy minimum when Rout = Rin
If Rout = Rin
2
e FKT flo
8(Q) (QL/Qu) (1 - Qu/Q) Pavo [
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General equation which describes all three cases

L., = A adl T
- 8 (Qo)2 (QL/QO)2 (1 B QL/QO)N P %f

1. N=1and A=11f P isdefined as Prr and Royt = zero
2. N=14ndA=2I1fP isdefined as Prr and Rout = Rin
3. N=2and A=11f P isdefined as Payvo and Royt = R|n

©2000 JKA Everard, University of York
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The effect of the load

e |_oad not included so far

 Incorporate as coupler/attenuator at O/P of
amplifier which causes:
— Reduction in open loop gain
— Increase in amplifier noise figure
Closed loop gain does not change as this Is
set by the insertion loss of the resonator
o Effect of load reduced if amplifier has
zero/low O/P impedance

©2000 JKA Everard, University of York
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Optimisation for minimum noise

e The amplifier gain and resonator loaded Q
are directly linked:

S (1_QL/QO)
* The noise factor Is also dependent on loaded
Q due to the change in source impedance

— This Is a second order effect and will be
considered later
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OPTIMISATION FOR MINIMUM NOISE

FKT . 1°
L(tm) = X

8Q,2(Q, /Q,)2(1-Q./Q,) PFED ~ [6f
For minimum noise if F is constant

6(L(tm)
5(Q, /Q.)

MINIMUM NOISE OCCURS WHEN :

Q@ [Qs= 2/3 and G = 3
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Noiseless resistors

Rs

\/

Device dependent
noise sources
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High efficiency 1GHz oscillator
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noise

Vout =G [Vin (1) *Vin(e)]

Vin(1)

C
il

Oscillator model.


















Double transmission line filter
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Flicker noise: measurement and reduction
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Flicker noise

40
Transposed flicker noise

— - -
2 J ~Uf Flicker noise Low frequency flicker noise
o~ ~~— comer F¢ has ~1/f characteristic
% / ~ Thermal noise with flicker noise corner
z of F
DC Frequenc . .
q J This Is modulated onto carrier
@ causing transposed flicker noise
with 1/Af characteristic
3 Transposed Flicker noise
% corners AFc The transposed flicker noise
— corner AF. is not the same as
.
) C
Z
| | . .
T . In oscillator this causes (1/AF)3
1 TequUeney characteristic at offsets below
Oscillating AF
frequency C
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FLICKER NOISE MODEL



FLICKER NOISE MEASUREMENT SYSTEM

REFERENCE LINE g () 7 E) = O
dimte e S0
AMPLIFIER UNDER =~ ——gm = §50°
TEST L.Ch
LS 3 F:
oL VARIABLI VARIABLI
- "!1'!' : _—. g = fARLARLE: n -
ELPIT’%FIR ATTENUATOR ATTENUATOR DIFLEXER

f< 100MHz
I

at— +2TdBm

3 CHANNEL
COMPUTER
COMNTROLLED
LF BAMDPASS
FILTERS

||.-|1’_/_il_’ H— e

SOURCTE —
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CURRENT METHODS FOR TRANSPOSED
FLICKER NOISE REDUCTION

1. Direct LF reduction
2. RF Detection and LF Cancellation
3. Transposed Gain Amplifiers

4. Feedforward Amplifiers

©2000 JKA Everard, University of York









Resonator /

53
~_ Directional

.
coupler

Reference

Circulator

"
uW-input /_Ox

AN

\

Attenuator/ 7

nira

phase shifter

Sel

/

Interferometer

Phase shifter L amplifier

—Dark fringe arm

Ultra low noise frequency discriminator for lowest noise X
band oscillators - Ivanov, Tobar and Woode [32], [33]
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TRANSPOSED GAIN AMPLIFIER

Delay Line
15
Local Osc.

75GHz - 60 MHz P€Vveloped independently by Driscoll and Weinert
[11] and Everard and Page-Jones [17-19]






TRANSPOSED GAIN OSCILLATOR

O/P

Local Osc.

Delay Line
T












Amplifier Module
10kHz to 200MHz

21+0.5dB Gain
Noise temp<250K
delay 1.3n5 (inverting)
- 15-24VDC@6B60mMA

s =l

._.‘-.—.1':'.7-1- | I e, B
. N '
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Phase Noise Performance

F,= 7.6GHz
Q, = 44,000

PAvo = 8dBm (6.3mW)
Noise Figure = 15dB including image noise
Flicker noise corner ~ 1kHz

L = -136dBc@10k

1z (theory -139dBc)

©2000 JKA Everard, University of York
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Problems with TGO
O/P power max ~ 8dBm NF ~ 15dB
Therefore use FEEDFORWARD

I/P m O/P
O W Delay + O
I/G

A4

Delay —@— TGA

©2000 JKA Everard, University of York
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REF —-25.0 dBm ATT 410 dB MKR 4 O Hz
—1

5 d8/ '\ , 181,90 dB

MARKER [ 3 w‘.!‘n'm‘ll”rl'

0 Hz | i 'llw-.ﬂl.l.m. ..]_d:i.. ¥

19.90| dB | ' -’”'IHUE L

RBW

1 KHz
SAMPIL_E
VBW

1 kHz

SWP 150 ms SPAN 30 kHz CENTER 15.0 kHz

Residual flicker noise reduction in 1 Watt GaAs Feedforward Amp
Broomfield and Everard FCS 2000
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Oscillator designs  « LC
+ SAW

e Transmission Line
e Helical

e Tuning

* Detailed designs

— LC
— Transmission line

©2000 JKA Everard, University of York



|OM 345 .
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-49.4 dBc Carrier power level = 23.4dBm

(300 Hz) Sideband noise at 25kHz offset
=-106.40 dBm (1Hz) -6dB for
10 dB[ SSB =-135.8 dBc ! Hz

Sideband
phase noise

(300 Hz)

IO (W) () WRRRE W N S| S -
O Hz 50 kHz

Frequency

VID AVG 30, RES BW 300 Hz, VBW 300 Hz, SWP 1.0s.

Oscillator phase noise against frequency,






SURFACE ACOUSTIC WAVE RESONATOR

Interdigital oA
Transducers

Reflector Reflector
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262 MHz SAW Oscillator

* Phase noise performance of -130dBc/Hz at
1kHz offset - limited by measurement

* Montress, Parker, Loboda and Greer [20]
demonstrated high power 500MHz SAW
oscillators with -140dBc/Hz at 1kHz offset
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Noise performance of 1.5GHz Osc.

* Q,=283, al =0.019, substrate €10

e O/P power = 3.1dBm

e Noise Figure = 3dB

* Noise performance = -104dBc/Hz @ 10kHz
o Within 2dB of the theory

©2000 JKA Everard, University of York



HELICAL RESONATOR OSCILLATOR

Output
coupler

Helical transmission line

Inductor Inductor



HELICAL RESONATOR
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Helical Resonator

©2000 JKA Everard, University of York
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Helical resonator oscillators [22]

900 MHz, Q, = 582 .
O/P power = 0dBm .
Noise Factor = 6dB .
Noise performance =
-127dBc/Hz @ 25kHz
Within 2dB of theory

1.6GHz, Q, = 382
O/P power = 0dBm
Noise Figure = 3dB
Noise performance =
-120dBc/Hz @ 25kHz
Within 2dB of theory

Z, of helix = 340Q measured using
Time Domain Reflectometry

©2000 JKA Everard, University of York
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CPW Fitter 1

S S— R ]

S54/M log MAG 10 dB/ REF 0 dB  4; -2.7512 dB
A TE-/53E OF
w2 | i 5 ! 4.500 499 513 GHJ
: | . i
{ . !
H
i

MARKER |1 ;
4.500499513

i | S S 4 l o
START 2.000 000 000 GHz STOP 7.000 000 000 GHz

©2000 JKA Everard, University of York



84

Tuning: Varactor Limitations

©2000 JKA Everard, University of York






86

Nolise degradation due to varactors
Power calculation by - Underhill [25]

o Power dissipated In varactor loss resistor,
rs, is: P=(Vq ) /rs

e The voltage across the capacitor in the
resonator is: V. =QV,.

* Therefore the power dissipated In the
varactor is: R, =V.’/Q%s

* The noise power in oscillators is
proportional to 1/ PQ,°

©2000 JKA Everard, University of York
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« The figure of merit (V.*/rs) should
therefore be as high as possible

e Optimum performance obtained for large
voltage handling characteristics and small
series resistances in varactor

©2000 JKA Everard, University of York
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Apply this using new noise equations

e If Pisdefined as P,yq, Q/Q,=1/2and R,
=R;,: then A=1and N =2 then

2

2FKT -
LFM = Q02 PAvo %T; A EFM=A'8(Qo)2(QL/QO)Z(l—QL/Qo)”P%;
2
FkTrs [
e As P, = 2P,, then Ly =—— °
Ve A\

Noise performance only dependant on V. and rs

©2000 JKA Everard, University of York
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Example

A varactor with a series resistance of 1Q
with an RF voltage of 0.25V rms at a
frequency of 1GHz.

* The noise performance at 25kHz offset Is -
97dBc for an amplifier noise figure of 3dB

©2000 JKA Everard, University of York
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Improved by

Reducing the tuning range by coupling
varactor into resonator more lightly

switching In tuning diodes using PIN diodes

Increased voltage handling using back to
back diodes

Improving the varactor

©2000 JKA Everard, University of York
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Varactor bias noise

 Flat noise spectral density on bias line
causes (1/Af)? noise in oscillator - same as
thermal noise in oscillator -

e For low level modulation:

2
_ (KF VM ) K¢ = tuning sensitivity, Hz/\Volt
L — V\, = noise voltage, Volts/VHz
FM 2 M
7 FM F,, = offset frequency, Hz

©2000 JKA Everard, University of York
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Bias resistor noise
2

€

o Keep bias resistor value low
— less than few hundred ohms eg 50Q

 Use this to advantage In resonator design to
suppress unwanted higher order resonances

- =4KTBr,

©2000 JKA Everard, University of York



TUNABLE TRANSMISSION LINE RESONATOR

O o Transmission line —>
/o i
La 4—‘ Bias voltage La
>
O I '9)
network N

3-6GHz resonator (5mm) on alumina
Two Alpha diodes CVE7900D
Cio=1.5pf, Q (-4V, 50MHz) = 7000
Kk (capacitance ratio) = 6
[26], [27]
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Insertion loss and Q vs frequency, 3-6GHz resonator

——— Q) factor 24
insertion loss

22

20

18

16

5 6
Resonant Frequency (GHz )

N

Insertion loss ( dB )
O —-~NWPkAh OO OO
Q factor
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| | =1
. o 6 20
i ; I .
m S/
T ] o
0 O - - ' . b
s | < 2
= — 1 I o
e @4 L @
C 4 ©
= O
-10 O
R | 3 — e e e}
Ll (MM 84 86 88 9 92 94 96 98 10
:__ [ _] resonant frequency,GHz
2X1mm

8.4 - 9.8GHz GaAs MMIC resonator [27]
Variation of Q,/Q, and S, vs frequency
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NOISE DEGRADATION DUE
TO
OPEN LOOP PHASE ERROR

©2000 JKA Everard, University of York
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Effects of open loop phase error [24]

o Always oscillate at N*360°
+ Resonator Q degradation as () m / dco
* Insertion loss and hence gain increase

. Causes COS*( degradation in noise
performance

o 45° causes 6dB noise degradation

e eg: At 10GHz with DRO Q=10,000, 1IMHz
offset causes 6dB degradation

©2000 JKA Everard, University of York
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Non linear CAD for oscillators

©2000 JKA Everard, University of York
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Non Linear CAD

Break Circult at short circuit point

Place current source and frequency
dependent resistor at this point
Make resistor:

» Open circuit at fundamental
» Short circuit at harmonics

Adjust amplitude and fundamental
frequency of current source to obtain zero
volts.

©2000 JKA Everard, University of York



OPTIMISATION TECHNIQUE

Z = O/C at fundamental and S/C at harmonics

Adjust magnitude and
frequency of I to
obtain zero V.

Oscillating
network










Measurement of coil Q

Adjust coll overlay to
obtain low coupling

Place tuned circuit In
between colls and
measure response

raise to reduce coupling
to obtain Q,

O

Network
analyser

B

Coil assembly -
Raise to reduce coupling.
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Summary - low phase noise

High unloaded Q and low noise figure
Set resonator coupling to achieve Q,/Q,=1/2 - 2/3
Set the open loop phase error to be N.360

Use a device and circuit configuration
producing the lowest transposed flicker
noise corner AF.

©2000 JKA Everard, University of York
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Summary - low noise tuning

 Incorporate varactor loss resistor into
resonator and set Q,/Q, as before
 For narrow band tuning

— loosely couple varactor into resonator and set
Q. /Q, as before or consider

— low loss phase shifter in the feedback loop.
Expect 6dB noise degradation if open loop
phase error goes to 45 degrees

 Arrange for low bias line noise eg r,=50Q

©2000 JKA Everard, University of York
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LC Design Example

©2000 JKA Everard, University of York
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Design Example

Design a 150 MHz oscillator using:

1. 235nH inductor with a Qg of 300.

2. Aninverting amplifier with an input and output
Impedance of 50Q

©2000 JKA Everard, University of York
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An LC resonator with losses can be represented as an LCR
resonator as shown in Figure 24.

L

o T [ i Acgo

Figure 24 Model of LC resonator including losses

wlL
Qy = ——
As ’ Rloss

The equivalent series resistance is 0.74Q.

©2000 JKA Everard, University of York



Assuming the amplifier has an O/P impedance Ry, The o

ratio Q. /Qq IS:

QL — Rloss

Qo Rloss + Rin + Rout
For Rm - Rout

Ql_ — Rloss

Qo Rloss + 2Rin

Q 1
Let Q ~ 2 asthe Pavo definition can be used.

R = Rloss
then RlOSS — 2 Rm then in 2

©2000 JKA Everard, University of York
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Therefore Ri, = Royt = 0. 37Q as shown in Figure 25.

235nH

‘ o—/§EH IP 0.74

o p

O

Rout

0.37Q 0.37Q

Figure 25 LC resonator with scaled source and load impedances

©2000 JKA Everard, University of York



As amplifier has 50Q input and output impedances: 11

Use LC transformer as shown in Figure 26.

Qs=Xs/Rs
N Qp=Rp/Xp

0.37Q

Figure 26 LC transformer to convert to 50Q

The equations for the series and shunt components are:

5
— — P -1
Q,=Q, R

©2000 JKA Everard, University of York
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The Q of the series component is: R,
The Q of the shunt component is:

R
Q,=—>

Xp Note:

R, = shunt resistance
Rs = series resistance

Xs = series reactance = jwL

1

Xp = shunt reactance = | UC

©2000 JKA Everard, University of York
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= 1158

O

1

©

[
_
ol

I

H

L
_

I
3| S

o

X, = 4.28 = jwL L =4.5nH

X,=431= jo,C C = 246 pf

©2000 JKA Everard, University of York
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Incorporate 2 transforming circuits into resonator circuit as
shown In Figure 27

4.5 nH 235 nH 4.5 nH

o YT o TU— 074 4 m :
246 pF —— ——— 246 pF
<« —>
O O O O
0.37Q2 0.37Q)

Figure 27 LC resonator with impedance transformers

©2000 JKA Everard, University of York



As the total inductance is 235nH, the part that resonates
with the series capacitor is reduced by 9nH as shown in
Figure 28.

4.5 nH 226 nH 4.5 nH

o——FU 55T 0.74 }—fm%\——o
246 pF —— —— 246p
O O

Figure 28 Resonator with total L = 235nH
It is now necessary to calculate the resonant frequency.

The part of the inductance which resonates with the series
capacitance is reduced by the matching inductors to:

235NnH - (2x4.5nH) = 226 nH

1 1
f= IC=—-;
21/LC (2nt)’
1
C = = 5pf
L(2nf)’ P

116
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Note the value of

The circuit now becomes: shunt capacitors:
246pf!
235 nH > pF
246 pF —— 246 pF
O O

Figure 29 Final resonator circuit

©2000 JKA Everard, University of York



: DBL5Z11 H .88
LOAD
F
P
£
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g
7
—-15.48
i
[y
—
= (Bl
—38.48
145 .8 158 .84 FREQ—MHZ 155.8H

Simulation of insertion loss, S,,, of resonator
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Effect of parasitic components

 \What Is the effect of the parasitics in the
shunt capacitors

 Investigate the effect of both a 1nH and
2nH parasitic inductance

* This Increases the effective capacitance as
close to resonance (reduces impedance)

©2000 JKA Everard, University of York



DBL3211 A.8848

o
LOAD
M

. ™
e i
oA

P N i
4| n i
A u|
f.-"rr;'-. N, e
15 .80 s .
I ™
= I
v "-.} 2] o
i) o
- . n -]
- £ i =
_,_,.o-""‘" 1% '-.'_
B~ I=] I B
=) B b
.""\-\. =
= = e .
—-38 .88 1 . o
145 .8 158 .4 FREQ-MHE 155 .8

Effect of parasitic inductance in shunt C
Yellow = 1nH
Green = 2nH - correct for this by reducing C from 246pf to 174pf
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Note the phase shift at resonance is 180°.
So the amplifier should provide a further 180°.

If necessary a phase shifter should be included to ensure N
x 360" at the peak in the resonance as shown in Figure 30.

Amp

R

Phase
Shifter

Resonator

Figure 30 Oscillator incorporating phase shifter

©2000 JKA Everard, University of York
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1 GHz Transmission Line Osc.

e Design a 1GHz Transmission line Oscillator
use 1.5mm FR4 PCB, Z, = 50Q, € = 3.3

Delay
line

@iﬁer

Output
coupler

—o0

o3, ZoT, Veff

i X

Transmission
Line Resonator

1X

Assume Z,T = Z,line

Q= ﬁ Q =7, (O)%:TZ %
Length L= e;fo - %%M%%

X =2nf,CZ, or -Z,/2mf|

©2000 JKA Everard, University of York
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Find loss of line

Measure loss of known length of line

Build a number of resonators with varying
Q,. Extrapolate to Q, by drawing straight
line as 321:(1-QL/Q03

Simulate using field model

Note that the loss of ‘low loss’ transmission
lines can be deduced from resonator
measurements

©2000 JKA Everard, University of York
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Calculate parameters

From measurement Q, = 39.3
oL =0.04

_[2
Fob Qg =1/2 X-\/%

X =7.07 therefore as X=2mnf,CZ,=-Z,/21f |

— Inductor | = 1.125nH

— capacitor C =22.5pf -7 %t EEWF%

Line length=7.53cms for | and 8.98cms for C

©2000 JKA Everard, University of York



o DBISZ11
FILTER

H.888

—18 .88

—2Z8 .88

n

W,

5AA .4

1888 .

FREQ-MHZ

1588 .

Transmission line resonator response using shunt inductor
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