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Low Noise Oscillators
 
• Oscillator models 

• Noise theories for thermal (additive noise)
 

• Optimisation for minimum sideband noise
 

• Flicker noise measurement and reduction
 

• Oscillator designs 
– LC oscillators 

– SAW oscillators 

– Transmission line oscillators 

• Tuning - varactor limitations 

• Non-linear CAD 

• Detailed designs 
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Spectrum of Oscillator
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Oscillator Models
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Block model of oscillator
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OSCILLATOR THEORY
 
VIN2 

(noise) 

1 
2

RIN

RIN 

ROUT 

VIN1 

(Feedback) 

C RLOSS L 

VOUT G = 
VIN 2 1− (βG) 

Model by Splitting
 
original input
 

into 2 identical
 
inputs
 

One for noise
 
injection
 

One for
 
feedback
 

Model like
 
Op-Amp
 

with two inputs
 
added and β0G = 1
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Model of Resonator
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Resonator Response
 

 R  Q  1β = IN 

1− L 

 
 RIN + ROUT  Q0   df  

1±	 2 jQ L f	 o  

If ROUT = RIN  then the insertion loss of the 
resonator is S21 = 2β, therefore: 

	 QL  1
S21 = 1−  

	 df  0 Q	 
1± 2 jQL f  
 o  

Insertion loss 
increases as 

QL tends to Q0 

S21 = 6dB 
when 

QL/Q0 = 1/2 

S21 = 9dB 
when 

QL/Q0 = 2/3 
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Resonator response versus QL/Q0 = 0.1, 0.5, 2/3, 0.9
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Insertion loss vs QL
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 At resonance ∆f is zero and VOUT/VIN2 is very large 
12 

VOUT G 1 == 
1
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 ±
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 



 



Interested in noise
 
‘skirts’
 

simplifies to: 

VOUT G 1 

(
f 
1
 

∆
±
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=
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

)

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∆
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Noise in terms of power in 1Hz BW
 

• Calculate input noise power in 1Hz BW 
– initially calculate square of I/P voltage 

• Assume O/P power limited
 
– or at least always calculate in terms of O/P *
 

• Equation starts to break down very close to
 
carrier at offsets typically << 1Hz
 
– this is not usually a problem 
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V = FkTR Noise input
IN IN 

2 FkTRIN  f o 
2 

(VOUT ∆ f ) = 2 2 
 

(R + R )) (1 − Q( ) (R Q0 )2  ∆f 4 QL IN OUT IN L 

Separate constants and variables 

2 FkTR  f 
2 

(V ∆ f ) = IN 
 o 

OUT 2 2 2 2Q0 )  ∆f 4( )Q0 (QL (R + R )) (1 − QQ0 ) (RIN OUT IN L 
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AM AM PM 

PM 

AM and PM noise
 
model
 

2 FkTRIN  f o 
2 

(VOUT ∆ f ) = 
2 2 2 2 8( ) (Q Q ) (R (R + R )) (1 − Q Q )  ∆f Q0 L 0 IN OUT IN L 0 
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2
(V ∆f )
(V 

OUT 

)LFM = 
2 

OUT MAX RMS 

FkTRIN  f o 
2 

L =  
2 2 2Q ) (R (R + RIN )) (V ) ∆f 
FM 

8( )Q ( Q Q ) (1 − Q0 L 0 L 0 IN OUT OUT MAX RMS 
2 2 

  

Define power PAVO or PRF 
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Noise spectrum of oscillator
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2(V )OUT MAX RMSPRF = 
R + R + ROUT LOSS IN 

(
2 

FkT R 2
OUT + RIN )  f o 

L 
 

FM = 
8 Q 2 2  

0 (( ) QL Q 2 
0 ) R IN (1 − QL Q0 ) P RF (ROUT + R LOSS + RIN ) ∆f  

ROUT justThe ratio of sideband noise in a 1Hz BW at 
dissipates 

offset ∆∆∆∆fto the total power is therefore: power! 

L 


2 

fFkT  R OUT + R IN  o 
FM = 

2 2 
 

8 ( Q0 ) Q0 (( ) QL 1 − QL Q P RIN 
 

0 ) RF    ∆f  
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If ROUT is zero as in a high efficiency oscillator 

FkT  f o 
2 

LFM = 
2 2  ∆f 8( )Q (Q Q ) (1 − Q
 Q )P0 L 0 L 0 RF   

Most amplifiers have
If ROUT = R IN similar I/P and O/P impedance 

FkT  f o 
2 

L = 
2  2FM 

4( )Q (Q Q ) (1 − Q
 Q )P ∆f
0 L 0 L 0 RF   
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Power available at the output PAVO then: 21 

2(V )OUT MAX RMSPAVO = 
4 ROUT 

2FkT  (ROUT + R )  f o 
2 

INLFM = 
2 

  
2   2 Q0 ) PAVO  ROUT . RIN 

 ∆f32( )Q (Q Q ) (1 − Q0 L 0 L   

 (R + R )2 
OUT IN  = 4 R .R  minimum when ROUT = RIN OUT IN  

If ROUT = RIN 

FkT  f o 
2 

2 2
LFM = 

8( )Q ( Q 
 

Q ) (1 − Q Q ) P ∆f0 L 0 L 0 AVO 
2 

  
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General equation which describes all three cases 

FkT  f 
2 

LFM = A .
2 N 

0 
28 ( )Q (Q Q ) (1 − Q Q0 ) P  ∆f 0 L 0 L 

1. N = 1 and A = 1 if P is defined as PRF and ROUT = zero
 

2. N = 1 a nd A = 2 if P is defined as PRF and ROUT = RIN
 

3. N = 2 and A = 1 if P is defined as PAVO and ROUT = RIN
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The effect of the load
 

• Load not included so far 

• Incorporate as coupler/attenuator at O/P of 
amplifier which causes: 
– Reduction in open loop gain 

– Increase in amplifier noise figure 

– NB Closed loop gain does not change as this is 
set by the insertion loss of the resonator 

• Effect of load reduced if amplifier has 
zero/low O/P impedance 

©2000 JKA Everard, University of York
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Optimisation for minimum noise
 

• The amplifier gain and resonator loaded Q 
are directly linked: 

S21 =(1−QL Q0 ) 
• The noise factor is also dependent on loaded
 

Q due to the change in source impedance
 
– This is a second order effect and will be
 

considered later
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High efficiency 1GHz oscillator
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Double transmission line filter
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Flicker noise: measurement and reduction
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Transposed flicker noise
 
Low frequency flicker noise
 

has ~1/f characteristic
 
with flicker noise corner
 

of FC
 

This is modulated onto carrier
 
causing transposed flicker noise
 

with 1/∆f characteristic
 

The transposed flicker noise 
corner ∆FC is not the same as 

FC 

In oscillator this causes (1/∆F)3 

characteristic at offsets below 
∆FC 
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CURRENT METHODS FOR TRANSPOSED
 
FLICKER NOISE REDUCTION
 

1. Direct LF reduction 

2. RF Detection and LF Cancellation 

3. Transposed Gain Amplifiers 

4. Feedforward Amplifiers 

©2000 JKA Everard, University of York
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Ultra low noise frequency discriminator for lowest noise X
 
band oscillators - Ivanov, Tobar and Woode [32], [33]
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Developed independently by Driscoll and Weinert 

[11] and Everard and Page-Jones [17-19] 
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Phase Noise Performance
 

• F0= 7.6GHz 

• Q0 = 44,000 

• PAVO = 8dBm (6.3mW) 

• Noise Figure = 15dB including image noise
 

• Flicker noise corner ~ 1kHz 

• LFM = -136dBc@10kHz (theory -139dBc) 
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Problems with TGO
 
O/P power max ~ 8dBm NF ~ 15dB 

Therefore use FEEDFORWARD
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Residual flicker noise reduction in 1 Watt GaAs Feedforward Amp
 
Broomfield and Everard FCS 2000
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Oscillator designs • LC  

• SAW  

• Transmission Line 

• Helical 

• Tuning 

• Detailed designs 
– LC  

– Transmission line 

©2000 JKA Everard, University of York
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262 MHz SAW Oscillator
 

• Phase noise performance of -130dBc/Hz at 
1kHz offset - limited by measurement 

• Montress, Parker, Loboda and Greer [20] 
demonstrated high power 500MHz SAW 
oscillators with -140dBc/Hz at 1kHz offset 

©2000 JKA Everard, University of York
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Noise performance of 1.5GHz Osc.
 

• Q0 = 83, αl = 0.019 , substrate εr10 

• O/P power = 3.1dBm 

• Noise Figure = 3dB 

• Noise performance = -104dBc/Hz @ 10kHz
 

• Within 2dB of the theory 
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Helical Resonator
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Helical resonator oscillators [22]
 

• 900 MHz, Q0 = 582 

• O/P power = 0dBm 

• Noise Factor = 6dB 

• Noise performance =
 

• -127dBc/Hz @ 25kHz
 

• Within 2dB of theory
 

• 1.6GHz, Q0 = 382 

• O/P power = 0dBm 

• Noise Figure = 3dB 

• Noise performance =
 

• -120dBc/Hz @ 25kHz
 

• Within 2dB of theory
 

Z0 of helix = 340Ω measured using
 
Time Domain Reflectometry
 

©2000 JKA Everard, University of York
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Q0 > 500 at 5GHz on low loss εr 2.5 PCB 

Q0 = 380 at 4.8 GHz on εr10 [23] 
results without screening, therefore near zero radiation loss 

©2000 JKA Everard, University of York
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5 section 4.5GHz 
bandpass filter 

on εr10 [23] 

low radiation loss
 

spurious out of band
 
waves exist
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Tuning: Varactor Limitations
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Noise degradation due to varactors
 
Power calculation by - Underhill [25]
 

• Power dissipated in varactor loss resistor, 
2

rs, is: P =(VRS ) rs 

• The voltage across the capacitor in the
 
resonator is: VC =QVrs
 

• Therefore the power dissipated in the
 
varactor is: P =V 2 Q2rs
V C 

• The noise power in oscillators is
 
proportional to 1 PQ0

2
 

©2000 JKA Everard, University of York
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2• The figure of merit  	(VC rs) should 
therefore be as high as possible 

• Optimum performance obtained for large 
voltage handling characteristics and small 
series resistances in varactor 

©2000 JKA Everard, University of York
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Apply this using new noise equations
 

• If P is defined as PAVO, QL/Q0 = 1/2 and Rout 

= Rin: then A= 1 and N = 2 then 

2FkT f 
L 0  2 

FkT  f  
As  L = A.  0  

 FM = 
Q 2 

  P  ∆f 
 FM 

 
8 Q 2 ( ) Q )2 (1−Q Q0 )N P  ∆f   0 (Q L 0 L  

0 AVO 

 
2 

FkTrs  f0 
2 

• As PAVO = 2PV then LFM = 2 
V ∆fC   

Noise performance only dependant on VC and rs 

©2000 JKA Everard, University of York
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Example 

• A varactor with a series resistance of 1Ω 
with an RF voltage of 0.25V rms at a 
frequency of 1GHz. 

• The noise performance at 25kHz offset is ­
97dBc for an amplifier noise figure of 3dB 

©2000 JKA Everard, University of York
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Improved by
 

• Reducing the tuning range by coupling
 
varactor into resonator more lightly
 

• switching in tuning diodes using PIN diodes
 

• Increased voltage handling using back to 
back diodes 

• improving the varactor 

©2000 JKA Everard, University of York
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Varactor bias noise 

• Flat noise spectral density on bias line 
causes (1/∆f)2 noise in oscillator - same as 
thermal noise in oscillator ­

• For low level modulation: 

2(K V ) KF = tuning sensitivity, Hz/VoltF MLFM = )2	 VM = noise voltage, Volts/√Hz 
FM = offset frequency, Hz(2FM 

©2000 JKA Everard, University of York
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Bias resistor noise
 
2 

e 
____ 

= 4kTBrb
n

• Keep bias resistor value low 
– less than few hundred ohms eg 50Ω 

• Use this to advantage in resonator design to 
suppress unwanted higher order resonances 

©2000 JKA Everard, University of York
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3-6GHz resonator (5mm) on alumina
 
Two Alpha diodes CVE7900D
 

Cj0=1.5pf, Q (-4V, 50MHz) = 7000
 
k (capacitance ratio) = 6
 

[26], [27]
 
©2000 JKA Everard, University of York 
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Insertion loss and Q vs frequency, 3-6GHz resonator
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2 x 1 mm 

8.4 - 9.8GHz GaAs MMIC resonator [27] 
Variation of QL/Q0 and S21 vs frequency 

©2000 JKA Everard, University of York
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NOISE DEGRADATION DUE
 
TO
 

OPEN LOOP PHASE ERROR
 

©2000 JKA Everard, University of York
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Effects of open loop phase error [24]
 

• Always oscillate at N*360º 

• Resonator Q degradation as Q ∝ dφ dω 
• Insertion loss and hence gain increase 

• Causes  Cos4φ degradation in noise
 
performance
 

• 45º causes 6dB noise degradation 

•	 eg: At 10GHz with DRO Q=10,000, 1MHz 
offset causes 6dB degradation 

©2000 JKA Everard, University of York
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Non linear CAD for oscillators
 

©2000 JKA Everard, University of York
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Non Linear CAD
 

• Break Circuit at short circuit point 

• Place current source and frequency 
dependent resistor at this point 

• Make resistor: 
» Open circuit at fundamental 

» Short circuit at harmonics 

• Adjust amplitude and fundamental 
frequency of current source to obtain zero 
volts. 

©2000 JKA Everard, University of York
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Measurement of coil Q
 

Adjust coil overlay to
 
obtain low coupling
 

Place tuned circuit in
 
between coils and
 
measure response
 

raise to reduce coupling
 
to obtain Q0
 

 of York
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Summary - low phase noise 

• High unloaded Q and low noise figure 

Q0 =1 2→ 2 3• Set resonator coupling to achieve QL 

• Set the open loop phase error to be N.360 

• Use a device and circuit configuration 
producing the lowest transposed flicker 
noise corner ∆FC 

©2000 JKA Everard, University of York
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Summary - low noise tuning 

• Incorporate varactor loss resistor into 
resonator and set QL/Q0 as before 

• For narrow band tuning 
– loosely couple varactor into resonator and set 

QL/Q0 as before or consider 

– low loss phase shifter in the feedback loop. 
Expect 6dB noise degradation if open loop 
phase error goes to 45 degrees 

• Arrange for low bias line noise eg rb=50Ω 

©2000 JKA Everard, University of York
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LC Design Example
 

©2000 JKA Everard, University of York
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Design Example 

Design a 150 MHz oscillator using: 

1.	 235nH inductor with a Q0 of 300. 

2.	 An inverting amplifier with an input and output 
impedance of 50Ω 

©2000 JKA Everard, University of York
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An LC resonator with losses can be represented as an LCR 
resonator as shown in Figure 24. 

Figure 24 Model of LC resonator including losses 

ωL 
As 

Q0 = 
Rloss 

The equivalent series resistance is 0.74Ω. 

©2000 JKA Everard, University of York
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Assuming the amplifier has an O/P impedance Rout, The 
ratio QL/Q0 is: 

QL Rloss =
 
Qo Rloss + Rin + Rout
 

For Rin = Rout 

QL Rloss =
 
Qo Rloss + 2Rin
 

QL = 1 
Let as the PAVO definition can be used. Qo 2
 

Rloss
 R = 
then Rloss = 2 Rin then in 2 

©2000 JKA Everard, University of York
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Therefore Rin = Rout = 0. 37Ω as shown in Figure 25. 

Figure 25 LC resonator with scaled source and load impedances
 

©2000 JKA Everard, University of York
 



  

 

112 As amplifier has 50Ω input and output impedances: 

Use LC transformer as shown in Figure 26. 

Figure 26 LC transformer to convert to 50ΩΩΩΩ 

The equations for the series and shunt components are: 

 Rp  
Qs = Qp =  −1 

R s  
©2000 JKA Everard, University of York
 



             

       

 

The Q of the series component is:  

The Q of the shunt component is:  

p 
p 

p 

Q 
R 

X 
=

 Note: 

Rp = shunt resistance 

SQ = s 

s 

X 

R 

113 

RS = series resistance 

XS = series reactance = jωL 

Xp = shunt reactance =    

1 

j cω 
©2000 JKA Everard, University of York
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 Rp   50  .Q Q  = = −1 = −1 = 1158 
  s p    R 0 37  . s 

Xs = 4.28 = jωL L = 4.5 nH 

1 
Xp = 4.31 = j Cω C = 246 pf 

©2000 JKA Everard, University of York
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Incorporate 2 transforming circuits into resonator circuit as
 
shown in Figure 27
 

Figure 27 LC resonator with impedance transformers
 

©2000 JKA Everard, University of York
 



 
 

    

 

  

                     

116 As the total inductance is 235nH, the part that resonates 
with the series capacitor is reduced by 9nH as shown in 
Figure 28. 

Figure 28 Resonator with total L = 235nH 

It is now necessary to calculate the resonant frequency. 

The part of the inductance which resonates with the series 
capacitance is reduced by the matching inductors to: 

235nH - (2 x 4.5 nH)   = 226 nH 

1 1 
= LC = 

(2πf )2 

1
C = 2 = 5pf

L(2πf ) 

f 
LC2π 

©2000 JKA Everard, University of York
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Note the value of
 
shunt capacitors:
 The circuit now becomes: 

246pf! 

Figure 29 Final resonator circuit
 

©2000 JKA Everard, University of York
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Simulation of insertion loss, S21, of resonator
 

©2000 JKA Everard, University of York
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Effect of parasitic components 

• What is the effect of the parasitics in the 
shunt capacitors 

• Investigate the effect of both a 1nH and 
2nH parasitic inductance 

• This increases the effective capacitance as
 
close to resonance (reduces impedance)
 

©2000 JKA Everard, University of York
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Effect of parasitic inductance in shunt C 
Yellow = 1nH 
Green = 2nH - correct for this by reducing C from 246pf to 174pf
 

©2000 JKA Everard, University of York
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Note the phase shift at resonance is 180o.
 

So the amplifier should provide a further 180o.
 

If necessary a phase shifter should be included to ensure N
 
x 3600 at the peak in the resonance as shown in Figure 30. 

Figure 30 Oscillator incorporating phase shifter
 

©2000 JKA Everard, University of York
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1 GHz Transmission Line Osc.
 
• Design a 1GHz Transmission line Oscillator 

use 1.5mm FR4 PCB, Z0 = 50Ω, εeff = 3.3 

Assume Z0T = Z0line 
2π  X Q0 = QL =πS21 ( )0   2αL  4  

 Veff   1  −1 2 
Length L = 1+   tan   2 f0  π   X  

X = 2πf0CZ0 or -Z0/2πf0l 

©2000 JKA Everard, University of York
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Find loss of line
 

• Measure loss of known length of line OR 

• Build a number of resonators with varying 
QL. Extrapolate to Q0 by drawing straight 
line as S =(1−Q Q0 )21 L 

• Simulate using field model 

• Note that the loss of ‘low loss’ transmission 
lines can be deduced from resonator 
measurements 

©2000 JKA Everard, University of York
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Calculate parameters 

• From measurement Q0 = 39.3 

• αL = 0.04 

• For Q L/Q0 = 1/2 X = 
Lα 
2 

• X = 7.07 therefore as X=2πf0CZ0=-Z0/2πf0l 
– inductor l = 1.125nH  Veff   1  −1L = 1+   tan – capacitor C = 22.5pf  2 f0  π   

• Line length=7.53cms for l and 8.98cms for C
 




Lα2 
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Transmission line resonator response using shunt inductor
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