

Optical frequency measurement & synthesis

Seth Foreman

on behalf of

Jun Ye

JILA, National Institute of Standards and Technology and Department of Physics, University of Colorado at Boulder foreman@colorado.edu

IFCS, Frequency Control Tutorial, Miami, June 4, 2006

\$ Funding \$

ONR, NASA, NSF, NIST, AFOSR

Exciting time for light control

Continuous wave laser:< 1 Hz stability and accuracy</td>Ultrafast pulse:< 1 fs generation and control</td>

Figure of merit: 10⁻¹⁵

Phase coherence after 10¹⁵ optical cycles

Progress in optical frequency measurement

Frequency spectrum in optical frequency synthesis

The First Optical Frequency Chain

NBS (NIST): measurement of speed of light, 1972

J. L. Hall & J. Ye, "NIST 100th birthday", Optics & Photonics News 12, 44, Feb. 2001

Stable optical cavity

Cavity length 1 m : fits 10^6 optical waves Finesse 10^5 : error amplified by 10^5 Division of a cycle : 10^4 (10⁻⁶) (10⁻¹¹) (10⁻¹⁵)

Optical phase remains coherent within 1 radian after 10¹⁵ optical cycles

M. Notcutt et al., Opt. Lett. 30, 1815 (2005).

Stability ~ 1 $\times 10^{-15}$ at 1 s

Laser linewidth ~ 0.5 Hz

Single mode cw laser

2 modes

Frequency Spectrum of Mode-Locked Laser

- Train of pulses ↔ comb of frequencies

Clockwork for optical frequency standards – Optical frequency synthesizer

Absolute Pulse Phase

- Generally in optics:
 - absolute phase never matters
 - only relative phases
- Ultrashort pulse (~10 fs or less)
 - envelope provides "absolute" phase reference

Of course:

- arbitrary envelope "absolute" phase
- but comparable to clock

Group vs. Phase Velocity

- In any material, the group and phase velocities differ
- Therefore carrier phase slowly drifts through the envelope as a pulse propagates

Group vs. Phase in Modelocked Lasers

- Each pulse emitted by a modelocked laser has a distinct envelope-carrier phase
 - due to group-phase velocity differential inside cavity

Time-Domain Consequences of Frequency-Domain Control

 $\begin{array}{l} f_{rep} = \text{Comb spacing} \\ f_0 = \text{Comb offset from} \\ \text{harmonics of } f_{rep} \\ \Delta \phi = \text{Phase slip b/t carrier \&} \\ \text{envelope each round trip} \end{array}$

$$2\pi v \cdot \tau_{r.t} + \Delta \phi = 2n\pi \rightarrow$$

$$v = nf_{rep} - \Delta \phi f_{rep} / 2\pi$$

Hänsch, 1978. Xu, Krausz *et al.*, Opt. Lett. **21**, 2008 (1996). Hänsch, Udem, Holzwarth *et al.*, 1999. Udem *et al.*, Opt. Lett. **24**, 881; PRL **82**, 3568 (1999).

Phase-Controlled 10 fs Laser

Kerr-Lens Modelocked Ti:Sapphire: large bandwidth, shortest pulse, (amazingly) simple

Orthogonal control of two degrees of freedom

Serious nonlinear optics

J.K Ranka, et al, Opt. Lett. 25, 25 (Jan. 2000)

Microstructured fiber

- dispersion zero at ~800 nm
- pulses do not spread
- continuum generation via self-phase modulation

One laser alone can do the trick!

Kerr-Lens Mode-locked Ti:Sapphire: large bandwidth, short pulse, (amazingly) simple

Carrier-envelope frequency independent DFG comb

O. Mücke et al., Opt. Lett., in press (2004).

Carrier-envelope frequency independent DFG comb

Carrier-envelope frequency independent DFG comb

Carrier-envelope frequency independent DFG comb

Frequency domain applications:

- Optical frequency synthesizer
- Optical atomic clock
- Timing signal transfer
- Time-frequency combined spectroscopy

Time domain applications:

- Carrier-envelope phase control
- Coherent pulse synthesis
- Nonlinear Microscopy
- Gainless amplifier

Frequency comb: state-of-the-art

• Optical Synthesizer

• Waveform control

- f_r uniformity < 10⁻¹⁸
- Absolute inaccuracy < 10⁻¹⁵
- Short term instabilities ~ 10⁻¹⁵ @ 1s
- Comb linewidth ~ 0.3 Hz
- $\Delta \phi < 10^{-2}$ rad, timing jitter < 1 fs

Ye & Cundiff, Eds., "Comb" book, Springer (2005). Udem, Holzworth, & Hänsch, Nature <u>416</u>, 233 (2002).

Comparison of Hz-linewidth lasers across the visible spectrum

Optical Frequency Synthesizer

Deliver Hz-linewidth anywhere in the optical spectrum!

Simultaneous RF and optical readout

Optical Frequency Synthesizer

Frequency domain applications:

- Optical frequency synthesizer
- Optical atomic clock
- Timing signal transfer
- Time-frequency combined spectroscopy

Time domain applications:

- Carrier-envelope phase control
- Coherent pulse synthesis
- Nonlinear Microscopy
- Gainless amplifier

What is a clock?

Improvement of Cs microwave standards over 50 years

New era for optical frequency standards & optical atomic clocks

Optical Frequency Standards sensitivity and resolution

High line Q & good signal-to-noise ratio (stability)

$$\delta v_{noise} \approx \frac{\Delta v_{(FWHM)}}{(S/N)_{\tau}} \longrightarrow \frac{\delta v_{noise}}{v_0} \approx \frac{1}{Q} \cdot \frac{1}{S/N} \cdot \frac{1}{\sqrt{\tau}} , \qquad Q \approx \frac{v_0}{\Delta v}$$

$$\frac{v_0 \text{ optical}}{v_0 \text{ microwave}} \approx \frac{10^{15}}{10^{10}} \approx 10^5$$
Microwave vs.Optical Clocks - friendly competition and corporation

Niering et al., PRL 84, 5496 (2000); Ye et al., Opt. Lett. 25, 1675 (2000)

Derive f_{rep} from optical frequency v

Continuously running optical clock

Carrier-envelope frequency independent optical clockwork

Carrier-envelope frequency independent DFG comb

Comparison of two optical molecular clocks

- electronic transition in I₂,
- vibrational transition in CH₄

Low phase noise microwave beat

Cold atom based optical frequency standards – the ultimate performance

Lifetime τ_0 ; $\tau/(2\tau_0)$ interactions over averaging time τ . For a single measurement, $SNR \sim \sqrt{N_{at}}$.

$$SNR \sim \sqrt{N_{at}} \times \sqrt{\tau/2\tau_0}$$

$$\sigma_y(\tau) = \frac{\delta v}{v_0} = \frac{1}{v_0} \frac{\Delta v}{SNR} = \frac{\Delta v}{v_0} \frac{1}{\sqrt{N_{at}}} \cdot \sqrt{\frac{2\tau_0}{\tau}}$$

$$= \frac{1}{2\pi v_0} \frac{1}{\sqrt{N_{at}}} \frac{1}{\sqrt{\tau_0 \tau}}$$

$$= \frac{1}{2\pi v_0} \frac{1}{\sqrt{N_{at} T_R \tau}} \qquad \text{(Interrogation time } T_R < \tau_0)$$

⁸⁸Sr: ${}^{1}S_{0} - {}^{3}P_{1}, \tau_{0} \sim 22 \ \mu s \ \text{lifetime}, \nu_{0} = 435 \ \text{THz}; N_{at} = 10^{6}; \sigma_{y}(\tau) = 7 \ \text{x10}^{-16} \ \text{at 1-s}$ ⁸⁷Sr: ${}^{1}S_{0} - {}^{3}P_{0}, \ \tau_{0} > 1 \ \text{s}, \sigma_{y}(\tau) < 5 \ \text{x 10}^{-18} \ \text{at 1 s}$ Ye *et al.*, IEEE J. Select. Topics. Quantum Elect. 9, 1041 (2003).

Cool Alkaline Earth – Strontium

Sr Narrow Line Transitions

Katori, 6th Symp. Freq. Standards & Metrology (2002)

Xu *et al.*, Phys. Rev. Lett. **90**, 193002 (2003). Xu *et al.*, JOSA B **20**, 968 (2003).

 ${}^{1}P_{1}$

Doubly forbidden; but made possible due to Hyperfine mixing (F = 9/2, ⁸⁷Sr)

Scalar polarizability (light shift independent of polarization)

 $\Delta m = 1$, Zeeman shift ~ 90 Hz/Gauss

Lattice based optical frequency standard

Atoms confined in Lamb-Dicke regime

• FORT potential identical for ¹S₀ and ³P₀

Katori et al., Sixth Symposium Freq. Standards & Metrology (2002)

- N quantum absorbers can potentially improve stability by $N^{1/2}$
- Collision shift minimized
- Long observation time; Zero Doppler shift

Matching the polarizabilities

Absolute Frequency of 87 Sr ${}^{1}S_0 - {}^{3}P_0$

Ludlow *et al.*, Phys. Rev. Lett. <u>96</u>, 033003 (2006). - against NIST Cs fountain clock 6.5 x 10⁻¹⁵

Optical local oscillators

State-of-the-art performance Hall, Bergquist, ...

Relative stabilization to < 10 mHz (< 5E-17)

Absolute laser linewidth ~ 0.2 Hz (~ 2E-16)

Frequency drift < 0.1 Hz/s

Modern laser stabilization \leftrightarrow isolation of passive optical cavity

- Vibration noise cancelled cavity geometry
- Novel mounting configuration
- Improved vibration isolation & thermal control
- Compact system design

Introduction – noise sources

Gravity is a BIG deal – ~ 24 MHz for 30 cm cavity

 $\delta v \sim 4.3 \ 10^{-8}$ per g for ULE; δv scales α L :

There may be a better support idea?

Horizontal → expect a reduction but ...

Observed Sensitivity ~ 1 x (Tilt effect linear in angle)

Better? Airy Points ?

Vertical → Max Sensitivity but ... Symmetry reduction ~200 x (Tilt effects only quadratic)

Deflection of cavities with acceleration

• Short cavity

• Support near geometrical center for CMRR

• Vertical orientation for symmetry

• ΔL_{cavity} ~50 pm

Measuring cavity's acceleration sensitivity

698 nm probe laser

50 cm

Finesse ~400,000

Andrew Ludlow

Linewidth ~ 1 Hz

Beat between two independent lasers at 1.064 μ m

M. Notcutt, J. Hall, et al. ...

Thermal noise in Fabry-Perot Cavities

Frequency domain applications:

- Optical frequency synthesizer
- Optical atomic clock
- Timing signal transfer
- Time-frequency combined spectroscopy

Time domain applications:

- Carrier-envelope phase control
- Coherent pulse synthesis
- Nonlinear Microscopy
- Gainless amplifier

Distribution of Frequency Standards

Telecom network synchronization

Distribution over Fiber Networks

Optical Clock transfer and comparison

Fiber transfer phase/frequency fluctuations

Methods for Stable Frequency Transfer

Transmission of Maser from NIST to JILA (7 km)

• similar performance in NASA/JPL work on frequency distribution system for radio telescopes

Active Fiber Phase Noise Compensation

Ye et al., J. Opt. Soc. B 20, 1459 (2003).

A new type of optical communication - Direct transfer of optical frequency

Mode-locked Lasers for Transmission

- easier to transfer optical stability to transmitting laser (all optical)
- more sensitive manner to derive noise error signal (optical pulse cross-correlation)
- transmission is time gated (less effect of noise)
- benefits at photo-detection points
Compact Comb Source: Fiber Laser, Mode-locked diode laser, ...

- Synchronization of commensurable rep rates
- Phase link from 780 nm to 1560 nm with spectral overlap by SHG

Dispersion Shifted Fiber & active fiber noise cancellation

Holman et al., Opt. Lett. 29, 1554 (2004).

Transcontinental optical clock signal

100 Hz servo BW \rightarrow Delay (max) ~ 1/(2 π 100) s \rightarrow Distance (max) \geq 150 km

Time domain applications:

- Coherent pulse synthesis
- Nonlinear Microscopy
- Gainless amplifier

Frequency domain applications:

- Optical atomic clock
- Optical frequency synthesizer
- Quantum Interference
- Precision spectroscopy

Phase coherence of separate femtosecond lasers — Step (1) Control of Pulse timing jitter

Synchronization between fs lasers

Cross-Correlation measurement by electronic phase scan

Superior reliability, repeatability, and speed for setting delay time without hysteresis.

Stability of the synchronization

Phase coherence of two femtosecond lasers — Step (2) Carrier phase locking

Time domain coherence between two femtosecond lasers

Synthesis of EM Spectrum

Coherent link between 800 nm and 1550 nm optical comb

•Synchronization of MLLD is step towards coherent locking

Nonlinear frequency conversion

Foreman, Jones, & Ye, Opt. Lett. 28, 370 (2003).

High Resolution Spectroscopy and Quantum Coherent Control

Time domain applications:

- Carrier-envelope phase control
- Coherent pulse synthesis
- Nonlinear Microscopy
- Gainless amplifier

Frequency domain applications:

- Optical atomic clock
- Optical frequency synthesizer
- Quantum Interference
- Precision spectroscopy

Coherent Anti-stokes Raman Spectroscopy

Electronically excited state

Resonant CARS Non-resonant contribution

Two-photon enhanced non-resonant contribution

CARS Spectroscopy (molecule) + Microscopy (spatial)

Live unstained fibroblast cells

C-H stretching vibration contrast: distribution of lipids

Potma et al. Opt Lett. 27, 1168 (2002).

Live unstained fibroblast cells

C-H stretching vibration contrast: distribution of lipids

Coherent Anti-stokes Raman Spectroscopy

f_{laser1} – f_{laser2} = vibration band

1 s/frame for 5 min, showing active transport of liposomes.

Image taken by Potma

Gainless amplifier - Coherent pulse adder

Jones & Ye, Opt. Lett. 27, 1848 (2002).

Coherent accumulation of pulses < 40-fs

Jones & Ye, Opt. Lett., in press (2004).

High-harmonic generation

Three step model

Step 1: Ionization

Step 2: Field Reversal

Step 3: Recombination

Corkum, Phys Rev Lett 71, 1994

Cavity-assisted coherent pulse buildup

Frequency Domain

Jones et al., Phys. Rev. A 69, 051803 (R) (2004).

High-harmonic generation

Intra-cavity HHG at 100 MHz A fs comb in the EUV R. J. Jon

R. J. Jones et. al., Phys. Rev. Lett. 94, 193201 (2005).

C. Gohle, T. Udem, T.W. Hänsch, et. al., Nature 436, 234 (2005).

- Actual HHG beam $\phi_{EUV} + 3\Delta\phi$ **EUV** Grating * Xenon ** 10 ns Single Pulse $\phi_{IR} + \Delta \phi$ IR Comb **EUV** Comb Phase Coherent
 - ★ 8 nJ → ~ 4 µJ per pulse!
 ★ > 10¹³ W/cm² peak intensity
 ★ 100 MHz repetition rate

Ionization of Xe at intracavity focus

HHG spectrum

 $> 5 \,\mu W$ average power for the 3rd harmonic

Published by The American Physical Society

- High repetition rate HHG
- Precise XUV spectroscopy
- Coherent time domain dynamics

Molecular lines on CCD

Thorpe *et al.*, Science **311**, 1595 (2006).

• > 100nm of real time spectral information

• 0.01 cm⁻¹ resolution Integrated absorption sensitivity < 10⁻⁸ @ 1 s

