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Basics of Optical Fiber 

History 
•	 1910: Concept conceived by Hondros & Debye 

•	 1915: Existence of a dielectrically guided wave 
demonstrated by Zahn, Ruter & Schriever 

•	 1959: Waveguide modes in optical fiber observed by Snitzer 
& Hicks. 

•	 1965: Fibers with a loss less than 20-dB/km for fiber optic 
communications proposed by Kao. 

•	 1970: Practical fiber with 20 dB/km loss announced by 
Kapron, Keck, & Maurer. 

•	 1972: 4 dB/km loss fiber developed by Corning. 

•	 Today: Fiber has a loss of 0.2 dB/km @ 1550 nm 
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Advantages of Optical Fiber 
• Wide Bandwidth ==> High frequency 

– 20 MHz-km (multimode) to > 100 GHz-km (single mode) 

– With wavelength division multiplexing, > 1Tb/s over 600 km demonstrated. 

• Low Loss ==> High Q delay line for low phase noise 
– ~0.5 dB/km @ 1300 nm, 0.2 dB/km @ 1550 nm 

• Low thermal-induced delay change ==> High stability 
– Single mode fiber: 7 ppm/°C, Special fiber: < 0.1 ppm/°C 

• No RFI or EMI problems ==> Immune to spurious noise sources 

• Electrical isolation between ends 

• No ground loops 

• Small, lightweight, & corrosion resistant 

• Material is plentiful & inexpensive 

• Cost/capacity ratio is extremely low 
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Reflection 
Mirror 

Po- LossPo 

Total Internal Reflection 
n1 (Low index of refraction) 

Critical angle 

Po Po 

n2 (High index of refraction) 

How Fiber Works 

Snell Law 

All mirrored surfaces have loss!! No Loss!! 

* n = c/v 
c = the speed of light in a vacuum (3 x 108 m/s)
 v = the speed of light in the material (~ 2 x 108 m/s in glass) 

* The index of refraction of glass can be changed by adding 
impurities (doping) 
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Basic Photonic links for RF applications 
Directly modulated Link Externally modulated link 

Laser Detector 

E/O converter O/E converter 
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Characteristics of Fiber Optic Components 
Optical Fiber 

• Mutimode fiber 
– High dispersion, low bandwidth, high modal beating noise. 

– Not recommended for frequency & timing. 

• Standard single mode fiber 
– low cost: ~$0.15/m 

– zero dispersion @ 1310 nm 

– thermal-induced delay change: ~ 7 ppm/°C 

– core/cladding sizes: 9/125 um, numerical aperture: 0.13 

– low attenuation: 0.5 dB/km @ 1310 nm, 0.2 dB/km @ 1550 nm 

– polarization fluctuates due to mechanical disturbances 

• Thermally compensated fiber 
– Extremely low thermal-induced delay change: 

• 0.1 ppm/°C broad range, 0 ppm/°C @ a specific temperature 

–	 high cost 
21 Steve Yao, JPL 



-- continue Characteristics of Fiber Optic Components 

• Polarization Maintaining (PM) Fiber 
– support two polarization modes 

– No polarization fluctuation 

– Expensive: ~ $20.00/m 

– difficult to connect: fiber axis alignment required 

– higher loss: < 2 dB/km @ 1310 nm & 1550 nm 

– Slightly smaller core size & larger NA than standard fiber 

• Polarizing (PZ) Fiber 
– support only one polarization mode ==> fiber polarizer 

– most expensive ~ $90.00/m 

– higher loss: <2 dB/km @ 1310 nm, <7 dB/km @ 1550 nm 

– higher bending loss 
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-- continue Characteristics of Fiber Optic Components 

• Dispersion-shifted fiber (DSF) 
– Zero dispersion shifted to 1550 nm, where loss is the lowest 

– mode-field/cladding sizes: 8.1/125 um, NA = 0.17 

– effective area: 50 um2 

• Non-zero dispersion-shifted fiber (NZ-DSF) 
– Minimum but non-zero dispersion at 1550nm 

– reducing fiber nonlinear effects 

– mode-field/cladding sizes: 8.4/125 um, NA = 0.16 

– effective area: 55 um2 

• Large core non-zero-dispersion-shifted fiber 
– Minimum but non-zero dispersion at 1550nm 

– mode-field/cladding: 9/125 um, 

– larger effective area: 72 um2 

–	 further reducing fiber nonlinear effects 
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Choices of operating wavelengths 

• 1310 nm range 
• most analog links & past installed digital links 

• low cost standard fiber off-the-shelf
 

• optical amplifier available
 

• low noise diode-pumped YAG laser off-the-shelf 

• high speed modulators & detectors off-the-shelf 

• high speed semiconductor laser off-the-shelf 

• high power semiconductor lasers off-the-shelf
 

• other fiber optic components off-the-shelf
 

• low dispersion ==> low PM to AM noise conversion 

• low loss 
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Choices of operating wavelengths 

• 1550 nm range 
• most present & future digital links, WDM systems 

• lowest attenuation 

• Er+ doped fiber amplifiers (EDFA) off-the-shelf 

• low cost standard fiber off-the-shelf 

• dispersion shifted fibers (DSF) off-the-shelf 

• high speed modulators & detectors off-the-shelf 

• high speed semiconductor laser off-the-shelf 

• high power semiconductor lasers off-the-shelf
 

• other fiber optic components off-the-shelf
 

• low dispersion with DSF ==> low PM to AM noise conversion 

• most industrial support in the future 
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Choices of operating wavelengths 

• Other wavelengths --1060, 820, 780, & 630 nm 
• high fiber attenuation 

• high cost optical fiber 

• high cost modulator 

• high cost lasers & detectors 

• high speed semiconductor laser not off-the-shelf 

• high power semiconductor lasers (single-mode fiber 
pigtailed) not off-the shelf 

• expensive custom-made fiber optic components 

• high dispersion ==> high PM to AM noise conversion 

• least industrial support in the future 
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Fabry-Perot laser
 (F-P laser) 

Distributed feedback laser
 (DFB laser) 

* Optical feedback provided
 by the end mirrors 

* multi-longitudinal modes 
* higher noise due to mode

 competition 

* Optical feedback provided
 by the grating on top of the
 gain medium 

* single longitudinal mode 
* lower noise 

Grating 

Gain mediumGain medium 

wavelength wavelength 

Commonly used lasers for RF systems 

Steve Yao, JPL27 



Gratings 

Gain medium 
Laser rod 

Diode laser bar 

Commonly used lasers for RF systems
 

Distributed Bragg 
Reflector (DBR) Laser 

* Bragg gratings are narrow
 band reflectors 

* Optical feedback provided
 by grating reflection 

* single/multimodes operation 

28 

Diode-pumped 
solid-state laser 

* Solid state gain medium
 pumped by diode lasers 

* Narrowest spectral width 
* Lowest noise 
* Most expensive 
* Less reliable 
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Commonly used Photodetectors 
• InGaAs PIN photodiodes (0.8 - 1.7 um) 

– High responsivity: up to 0.95 A/W commercially available 

– High saturation power: up to 15 mW commercially available 

– High speed: up to 25 GHz commercially available 

– Lowest dark current: ~0.1 nA (intrinsic noise) 

• InGaAs Schottky photodiodes (0.95 - 1.65 um) 

– Lower responsivity: ~ 0.4A/W 

– Highest speed: 60 GHz commercially available 

– Low saturation power: ~ 2 mW 

• Ge PIN photodiodes (0.8 - 1.8 um) 

– High responsivity: ~0.9 A/W 

– Higher dark current: ~ 1 nA 

– Not well developed for high speed: ~ <6 GHz 
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Optical in Optical outs 

RF in 

Optical in Optical outs 

RF in 

Laser	 
Optical out 

RF in 

Modulators
 
Mach-Zehnder modulator 

* Wide Bandwidth: up to 100 GHz 
* Good linearity 
* No chirp (good) 
* Well developed, widely used 
* High drive voltage ==> 

High RF insertion loss 

Directional coupler modulator 

* Potential large Bandwidth 
* Not well developed 
* Not as good linearity 
* Modulation chirp 
* High drive voltage ==> 


High RF insertion loss
 

Electro-absorption modulator 
* Wideband width: up to 60 GHz
* Easy integration with diode lasers 
* Extremely compact 
* Low drive voltage 	* Modulation chirp (not good) 
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Other fiber optic devices available 
• Directional couplers (ratio: 1 - 50%, backreflection < -65 dBo) 

• Isolators (insertion loss: < 0.6 dBo, isolation > 40 dBo) 

• Circulators (insertion loss: < 0.8 dB, isolation > 40 dBo) 

• Polarizers (insertion loss: < 0. 4 dB, backreflection < -60 dB) 

• Polarization controllers (no loss, no backreflection) 

• Filters (insertion loss < 0.5 dB, BW: 0.8 nm and up) 

• Faraday polarization rotator and mirror 

• connectors: Physical contact (PC) and angled physical contact(APC) 

– loss < 0. 25 dB, backreflection: PC < -40 dB, APC < -65 dB 

• Fiber optic amplifiers: doped fiber & semiconductor 
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Noise sources in photonic systems 
• Thermal noise: kT 

• Shot noise: 2eIR 
• Laser RIN (relative intensity noise): <ΔP2>/P2 

• 1/f RIN (at < 10 kHz) 

• Relaxation oscillation RIN peak 

• Interferometric noise 

• Double Rayleigh scattering noise 

• Brillouin scattering caused noise 

• Fiber dispersion mediated noise 

• Fiber thermal noise 
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White Noise
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1/f RIN & Relaxation Oscillation RIN 
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Typical diode pump YAG laser 

* The low frequency 1/f noise & relaxation oscillation peak
 will be multiplied up by the modulator & affect the signal 
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Double Rayleigh Scattering Brillouin + Rayleigh scattering 

Rayleigh scattering: photon being 
scattered from random material 
inhomogeneities 

Optical 
carrier 

Signal 
sideband 

Signal 
sideband

 Double scattered light 

Transmitted light 
12 

3 

1’2’ 3’ 

1+1’, 2+2’, 3+3’ ==>
 Low freq. noise (< 1 GHz), no wary 
1+2’, 1+3’, 1’+2’, 1’+3’ ==> 

noise around signal!! 

Brillouin scattering: photon being 
scattered by acoustic phonons in the fiber. 

Brillouin scattering 

Rayleigh scattering 

Optical 
carrier 

Signal 
sideband 

Signal 
sideband 

Stokes shift 

Scattered light is frequency down shifted 
(Stokes shift) from the entering light. 
When modulation frequency = Stokes 
shift ==> noise around signal 

Brillouin + 
Rayleigh 
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Fiber thermal fluctuation noise 

Just like Johnson’s noise, fiber’s 
refractive index fluctuates with kT 

First studied by fiber gyro researchers 

For 9/125 um fiber @ 1.3 um 

<Δf>/f = <ΔL>/L ~10-12/L1/2 

L = 100 m ==> <Δf>/f ~ 10-13 

L = 10 km ==> <Δf>/f ~ 10-14 
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Fiber dispersion mediated noise 

Dispersion: different light frequency 
“see” different fiber lengths 

Optical frequency fluctuation 
==> RF phase fluctuation 

For standard single mode fiber, 
1 nm away from zero dispersion: 

<Δf>/f =<ΔL>/L ~ 0.6 x 10-5 Δυ/υ 

Δυ/υ: laser frequency stability 

Δυ/υ=10−10 ==> <Δf>/f = 6 x 10-15 
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Fiber Optic Frequency Standard Distribution 

•	 Frequency standards are extremely expensive 

•	 Multiple users at different location share one
 
standard ==> big money saving
 

•	 Distribution system should not degrade the
 
performance of the standard
 

•	 In 1981, JPL pioneered the fiber optic
 
frequency standard distribution
 

•	 The only workable solution so far 
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Photonic technology for signal
 
mixing & multiplication
 

•	 Photonic links w/ traditional & photonic mixers 

•	 Pros & cons of present photonic signal mixing 

•	 SOA based photonic mixing links 

•	 Brillouin Selective Sideband Amplification 
(BSSA) of RF signals 

•	 BSSA based photonic mixing links 

•	 OEO based photonic mixing links 

•	 Summary 
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Fiber Optic Links w/ traditional mixers 
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Photonic Mixing Links 

LD 

IF/RF 

fLO/n, n = 1, 2, 3... 
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Filter
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Photodetector as a mixer 

(Asin2πf1 + Bsin2πf2)2 

==> (f1 + f2) and (f1 - f2)f1 f2 
Optical freq. 

Photocurrent I ~ |E|2 

fo 
Optical carrier 

IF IF 

LO LO 

RF 

Power Law Photodetector ==> acts as a mixer 

Modulator & photodector combination ==> signal up or down conversion 



Pros & Cons of Present Photonic Mixing Links
 

Pros
 
* Separate LO trans. not needed 

* Harmonic up/down conversion
 ==> Lower freq. LO & circuit 

* Slow detector for down conv.
 ==> lower cost, higher power 

* Slow laser/EOM for up conv.
 ==> lower cost 

* Infinite isolation: LO & RF 

47 

Cons 
* Low efficiency (most cases) 

* High LO power (some cases) 

* Freq. locking circuits needed
 (some cases) 
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SOA
G(t) 

  

All-Optical RF Mixing Using a Semiconductor Optical Amplifier (SOA) 

λLO

λRF
λRF

Pin ( t) 

Pout( t) = G(t) * Pin ( t)ωLO

ωRF

ωRF-ωLO

ωRF+ωLO

SOA 
λLO 

λRF G(t) λRF 

Pin ( t) 

Pout( t) = G(t) * Pin ( t)ωLO 

ωRF 

ωRF-ωLO 

ωRF+ωLO 

LO Modulates 
the Gain 

LD1 Modulator 

SOA Optical 
Detector 

Optical Filter 
@1312 nm RF 

Spectrum 
Analyzer 

LD2 Modulator 

1312 nm 

1320 nm 

6 GHz 

5 GHz 

(b) 

RF 

LO 

Advantages: 
* Mixing with Gain 
* Flexible LO location 
* LO can be distributed

 in the network 

Gain Mod. Bandwidth > 50 GHz 
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1GHz, OMI(LO) = 90 % 
11 GHz, OMI(LO) = 90%
1GHz, OMI(LO) = 30% 
11 GHz, OMI(LO) = 30% 

1GHz, OMI(RF) = 25% 
11GHz, OMI(RF) = 25% 
1GHz, OMI(RF) = 15% 
11GHz, OMI(RF) = 15% 
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Brillouin Selective Sideband Amplification 
BSSA 
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BSSA Assisted Harmonic Up/Down Conversions 
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* Slow modulators do fast things 
* Conversions with IF (RF) gain 
* PM modulator OK

 ==> lower loss, less expensive 
* Low LO driving power 

0.5 GHz modulator ==> 8 GHz 
2 GHz modulator ==> 32 GHz 
10 GHz modulator ==> 160 GHz 
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Opto-electronic Oscillator based Photonic Mixing Links 

Laser 

E/A modulator Optical out 

Fiber 
loop 

Detector 

Amp.
Electrical out 

Integrated Laser/Modulator 

OEO 

OEO Module 

OEO 

PD 

IF/Data 

RF 

OEO PD 

IF/data 

Slow modulator 
Fast detector 

RF 

Advantages: 
* Dual electrical & optical outputs 

* High spectral purity, low phase noise 

* Frequency up to 100 GHz 

* Compact & potentially low cost 
* Tunable & VCO 

* Eliminate external LO ==> lower cost 

Transmitting Receiving 

No external LO needed 
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Section Summary 

•	 Photonic mixing makes RF links cost effective 

•	 SOA based mixing provides conversion gain 

•	 BSSA holds promise for RF systems 

•	 BSSA assisted mixing provides conversion gain & 
harmonic conversion capabilities 

•	 OEO based photonic mixing eliminate electrical 
LO & greatly simplifies system design. 
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Photonic Techniques for generating RF signals 

• Requirements of Photonic Signal Sources 

• Evolution of Oscillators 

• Opto-electronic oscillators (OEO) 

• Properties of OEO 

• Experimental results 

• Comparison with other type oscillators 

• Coupled Opto-electronic oscillators (COEO) 

• Summary 
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Special Requirement of Signal Sources 
For Photonic Applications 

E O O O EO 

* Photonic Systems are Electro-Optic Hybrid Systems 

===> Ideal Signal Source: both Electrical & Optical Signals 
Avoid high loss E/O and O/E conversions 

===> High Frequency 

===> Wide Tuning Range 

===> Can be Interfaced with the System both Electrically & Optically. 

* Photonic systems are Broadband Systems 
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Evolution of Oscillators 

• Mechanical Oscillators: Pendulum, tuning fork ==> 
• Electronic Oscillators: Van der Pol oscillator ==> 
• electromechanical Hybrid Oscillators: Quartz Oscillator ==> 
• Atomic Oscillators: Maser, Cesium beam standard ==> 
• Optical Oscillators: Laser ==> 
• 6. Electro-Optic Hybrid Oscillator? ==> OEO & COEO 

OEO is a new class of oscillators 

Electrical & Optical Hybrid 
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OEO vs. van der Pol Oscillator 
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OEO Features 

• High Q resulting from the low loss fiber ==> Low phase noise 

• High frequency resulting from fast photonic devices 

• Widely tunable 

• Both electrical & optical outputs ==>No E/O & O/E conversion required 

• Can be locked to a master reference either optically or electrically 

• Meets the requirements of RF photonics systems 

Pump Laser 
E/O Intensity
 Modulator Fiber Spool 

PhotodetectorElectrical 
Amplifier

 Electrical 
signal splitter 

Electrical
 filter 

Optical
 output 

Optical Fiber 
Electrical path 

Electrical
 output 
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Other Approaches for Generating Photonics Signals 

* Multiplier + E/O Conversion 

Multi-stage multipliers 

Quartz E/O 

Modulated Optical Signal 

* Beating Two Lasers 
Requiring: Phase lock or injection lock to a RF source 

* Beating two modes of a mode locked laser 

Laser1 

Laser2 

Reference 
Source ~ 

RF source is also required 

Limited by 
RF sources 
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Performance Characteristics of OEO 
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OEO Phase noise as a function of oscillation frequency 
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Comparison with Commercial Oscillators 

Phase Noise @ 10 GHz, 10 kHz from carrier 

• HP high performance synthesizer: -94 dBc/Hz 

• Best quartz multiplied to 10 GHz: -114 dBc/Hz 

• 1st OEO bench unit at 10 GHz: -140 dBc/Hz 
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Optical Pulse measurement Phase Noise Measurement 
w/ a 40 GHz detector and Tek CSA 803 Using Frequency Discrimination Method 

Pulse width: 17 ps 10 GHz 
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Section summary 

•	 OEO & COEO hold promise as high freq., low 
phase noise, & low jitter µ-wave & optical sources 

•	 Lowest phase noise @ 10 GHz of any free running 
oscillator at room temperature 

•	 Further phase noise reduction using noise 
reduction techniques 

•	 Low jitter reference signal for µ-wave, mm-wave 
communication & photonic A/D 
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