Photonic Techniques for Frequency & Timing

A Tutorial

-JPI

1998 IEEE International Frequency Control Symposium May 26, 1998

X. Steve Yao

Jet Propulsion Laboratory California Institute of Technology Tel: 818-393-9031 Fax: 818-393-6773 Email: xsyao@horology.jpl.nasa.gov

Other contributors: Lute Maleki, George Lutes, Malcolm Calhoun, William Shieh

Presented at the 2000 IEEE Int'l Frequency Control Symposium Tutorials June 6, 2000, Kansas City, Missouri, USA

Contents			
1. Basics of Optical Fiber	1-19		
i. History	1		
ii. Advantages	2		
iii. Fiber vs. coax (data)	3-8		
a. Bandwidth vs. cable length	3		
b. Attenuation vs. frequency	4-5		
c. Group delay vs. temperature	6-7		
d. Temperature stability	8		
iv. How fiber works	9-13		
v. Discussion of fiber dispersion	14-19		
2. Basic Photonic Links for RF applications	20		
3. Characteristics of Fiber Optic Components	21-31		
i. Fiber	21-23		
ii. Choices of operation wavelengths	24-26		
iii. Lasers	27-28		
iv. Photodetectors	29		
v. Modulators	30		
vi. Other commercially available fiber optic devices	31		

Contents

___JPL:

4.	Noise sources in photonic systems	32-38
	i. White noise: Thermal, shot, and RIN	33
	ii. 1/f RIN and relaxation oscillation RIN	34
	iii. Interferometric noise	35-36
	iv. Double Rayleigh scattering & Brillouin scattering	37
	v. Fiber thermal fluctuation	38
	vi. Fiber dispersion mediated noise	38
5.	Fiber Optic Frequency Standard Distribution	39-43
6.	Photonic Technology for signal mixing & multiplication	44-54
7.	Photonic Techniques for generating RF signals	55-69

Basics of Optical Fiber

History

- 1910: Concept conceived by Hondros & Debye
- 1915: Existence of a dielectrically guided wave demonstrated by Zahn, Ruter & Schriever
- 1959: Waveguide modes in optical fiber observed by Snitzer & Hicks.
- 1965: Fibers with a loss less than 20-dB/km for fiber optic communications proposed by Kao.
- 1970: Practical fiber with 20 dB/km loss announced by Kapron, Keck, & Maurer.
- 1972: 4 dB/km loss fiber developed by Corning.
- Today: Fiber has a loss of **0.2 dB/km** @ 1550 nm

1

Advantages of Optical Fiber

- Wide Bandwidth ==> High frequency
 - 20 MHz-km (multimode) to > 100 GHz-km (single mode)
 - With wavelength division multiplexing, > 1Tb/s over 600 km demonstrated.
- Low Loss ==> High Q delay line for low phase noise
 - ~0.5 dB/km @ 1300 nm, 0.2 dB/km @ 1550 nm
- Low thermal-induced delay change ==> High stability
 - Single mode fiber: 7 ppm/°C, Special fiber: < 0.1 ppm/°C
- No RFI or EMI problems ==> Immune to spurious noise sources
- Electrical isolation between ends
- No ground loops
- Small, lightweight, & corrosion resistant
- Material is plentiful & inexpensive
- Cost/capacity ratio is extremely low

2

Ami A 22 20A

GFL - 9/6/83

FIBER CONSTRUCTION

12

n = THE INDEX OF REFRACTION 2 ŚTEP. n .48 1.46 d (Å) . ł. 37.5 87.5 125

STEP INDEX FIBER

FIBER TYPES

SINGLE-MODE FIBER

GFL - 9/6/83

MODE

DISPERSION

DISPERSION LIMITS THE BANDWIDTH OF A FIBER # 20 MHz km FOR STEP INDEX FIBER

THERE ARE THREE TYPES OF DISPERSION • INTERMODAL DISPERSION • MATERIAL DISPERSION • WAVEGUIDE DISPERSION

• EACH TRAVELS A DIFFERENT DISTANCE

CEL - 976/83

VELOCITY OF LIGHT IN A FIBER IS DIFFERENT AT EACH WAVELENGTH

DIFFERENT WAVELENGTHS ARRIVE AT FAR END AT DIFFERENT TIMES

£Υ.

WAVEGUIDE DISPERSION

IMPERFECTIONS IN THE FIBER DEFLECT THE MODES

- THIS CHANGES THE DISTANCE TRAVELED
- MODES ARRIVE AT THE FAR END AT DIFFERENT TIMES

.

1.4

-ipl->

.

REDUCING DISPERSION

INTERMODAL DISPERSION

- GRADE THE INDEX OF REFRACTION SUCH THAT IT IS LARGEST AT THE CENTER AND DIMINISHES TOWARD THE CLADDING
 - LIGHT TRAVELING DOWN THE CENTER (SHORTEST DISTANCE) GOES SLOWER
 - LIGHT BOUNCING BACK AND FORTH AT THE GREATEST ANGLE TRAVELS FARTHER BUT SPENDS MORE TIME NEAR THE CLADDING WHERE n IS SMALLER. THEREFORE, IT GOES FASTER ON THE AVERAGE.
 - THE NET RESULT IS THAT THE RAY'S REACH THE FAR END AT MORE NEARLY THE SAME TIME

GFL - 9/6/83

REDUCING DISPERSION (cont.)

- INTERMODAL DISPERSION (CONT.)
 - REDUCE THE CORE SIZE UNTIL ONLY ONE RAY, WHICH TRAVELS STRAIGHT DOWN THE CENTER OF THE FIBER, IS PASSED (SINGLE-MODE)

MATERIAL DISPERSION

- OPERATE AT A WAVELENGTH WHERE DISPERSION IS NEAR ZERO (1300 nm FOR PPESENT FIBERS)
- USE A VERY STABLE LIGHT SOURCE THAT EMITS AT ONLY ONE FREQUENCY

WAVEGUIDE DISPERSION

REDUCE IMPERFECTIONS

GFL - 9/6/83

1.

Characteristics of Fiber Optic Components

Optical Fiber

• Mutimode fiber

- High dispersion, low bandwidth, high modal beating noise.
- Not recommended for frequency & timing.

• Standard single mode fiber

- low cost: \sim \$0.15/m
- zero dispersion @ 1310 nm
- thermal-induced delay change: ~ 7 ppm/ $^{\circ}$ C
- core/cladding sizes: 9/125 um, numerical aperture: 0.13
- low attenuation: 0.5 dB/km @ 1310 nm, 0.2 dB/km @ 1550 nm
- polarization fluctuates due to mechanical disturbances
- Thermally compensated fiber
 - Extremely low thermal-induced delay change:

- 0.1 ppm/°C broad range, 0 ppm/°C @ a specific temperature
- high cost

C .	T 7	TDT
Steve	Yao,	JPL

-- continue Characteristics of Fiber Optic Components

• Polarization Maintaining (PM) Fiber

- support two polarization modes
- No polarization fluctuation
- Expensive: ~ \$20.00/m
- difficult to connect: fiber axis alignment required
- higher loss: < 2 dB/km @ 1310 nm & 1550 nm
- Slightly smaller core size & larger NA than standard fiber
- Polarizing (PZ) Fiber
 - support only one polarization mode ==> fiber polarizer
 - most expensive ~ \$90.00/m
 - higher loss: <2 dB/km @ 1310 nm, <7 dB/km @ 1550 nm</p>
 - higher bending loss

22

-- continue Characteristics of Fiber Optic Components

- Dispersion-shifted fiber (DSF)
 - Zero dispersion shifted to 1550 nm, where loss is the lowest
 - mode-field/cladding sizes: 8.1/125 um, NA = 0.17
 - effective area: 50 um²
- Non-zero dispersion-shifted fiber (NZ-DSF)
 - Minimum but non-zero dispersion at 1550nm
 - reducing fiber nonlinear effects
 - mode-field/cladding sizes: 8.4/125 um, NA = 0.16
 - effective area: 55 um²
- Large core non-zero-dispersion-shifted fiber
 - Minimum but non-zero dispersion at 1550nm
 - mode-field/cladding: 9/125 um,
 - larger effective area: 72 um²
 - further reducing fiber nonlinear effects
 - 23

Choices of operating wavelengths

• 1310 nm range

- most analog links & past installed digital links
- low cost standard fiber off-the-shelf
- optical amplifier available
- low noise diode-pumped YAG laser off-the-shelf
- high speed modulators & detectors off-the-shelf
- high speed semiconductor laser off-the-shelf
- high power semiconductor lasers off-the-shelf
- other fiber optic components off-the-shelf
- low dispersion ==> low PM to AM noise conversion

24

• low loss

Choices of operating wavelengths

• 1550 nm range

- most present & future digital links, WDM systems
- lowest attenuation
- Er+ doped fiber amplifiers (EDFA) off-the-shelf
- low cost standard fiber off-the-shelf
- dispersion shifted fibers (DSF) off-the-shelf
- high speed modulators & detectors off-the-shelf
- high speed semiconductor laser off-the-shelf
- high power semiconductor lasers off-the-shelf
- other fiber optic components off-the-shelf
- low dispersion with DSF ==> low PM to AM noise conversion
- most industrial support in the future

25

Commonly used Photodetectors

- InGaAs PIN photodiodes (0.8 1.7 um)
 - High responsivity: up to 0.95 A/W commercially available
 - High saturation power: up to 15 mW commercially available
 - High speed: up to 25 GHz commercially available
 - Lowest dark current: ~0.1 nA (intrinsic noise)
- InGaAs Schottky photodiodes (0.95 1.65 um)
 - Lower responsivity: ~ 0.4A/W
 - Highest speed: 60 GHz commercially available
 - Low saturation power: ~ 2 mW
- Ge PIN photodiodes (0.8 1.8 um)
 - High responsivity: ~0.9 A/W
 - Higher dark current: ~ 1 nA
 - Not well developed for high speed: ~ <6 GHz

29

Other fiber optic devices available

- Directional couplers (ratio: 1 50%, backreflection < -65 dBo)
- Isolators (insertion loss: < 0.6 dBo, isolation > 40 dBo)
- Circulators (insertion loss: < 0.8 dB, isolation > 40 dBo)
- Polarizers (insertion loss: < 0. 4 dB, backreflection < -60 dB)
- Polarization controllers (no loss, no backreflection)
- Filters (insertion loss < 0.5 dB, BW: 0.8 nm and up)
- Faraday polarization rotator and mirror
- connectors: Physical contact (PC) and angled physical contact(APC)
 loss < 0. 25 dB, backreflection: PC < -40 dB, APC < -65 dB
- Fiber optic amplifiers: doped fiber & semiconductor

31

Noise sources in photonic systems

- Thermal noise: **k**T
- Shot noise: 2eIR
- Laser RIN (relative intensity noise): < P²>/P²
- 1/f RIN (at < 10 kHz)
- Relaxation oscillation RIN peak
- Interferometric noise
- Double Rayleigh scattering noise
- Brillouin scattering caused noise
- Fiber dispersion mediated noise
- Fiber thermal noise

32

for Fresnel reflection at glass - air: $\rho^2 = 0.04$

35

FIBER OPTIC REFERENCE FREQUENCY AND TIMING DISTRIBUTION ASSEMBLY SPC 10 TO DSS 16

PERFORMANCE vs SPECIFICATIONS					
<u>L(f)</u> dBc AT 100 MHz OFFSET FREQUENCY, Hz 10 100 1000 10,000	FTS SPEC. -92 -103 -115 -115 -115 -115	LINK PERFORMANCE -119 -128 -134 -140 -140			
SPURIOUS OUTPUTS NONE MEASUREABLE ABOVE NOISE LEVEL IN 1 Hz BANDWIDTH ALLAN DEVIATION					
TAU, SECONDS 1 10 100 1000 3000 10,000	FTS SPEC. 2E-13 4E-14 1.5E-15 1.5E-15	LINK PERFORMANCE 2E-14 4E-15 1E-15 5E-16 3E-16 2E-16			

<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item>

OEO vs. van der Pol Oscillator **Opto-electronic Oscillator** van der Pol Oscillator iph Photocurrent *i*p Plate current V_{pB}• LC tank Photodiode Plate Fiber delay Filter Vp Vo Vm VB Electrons Cathode kHz to > 70 GHz ┉┉ Photons in kHz Laser High Q & High Frequency Low Q & Low Frequency 58 Steve Yao, JPL

- HP high performance synthesizer: -94 dBc/Hz
- Best quartz multiplied to 10 GHz: -114 dBc/Hz
- 1st OEO bench unit at 10 GHz: -140 dBc/Hz

