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Overview of Talk
 

 Simple example of Kalman filter 

 Discuss components and operation of filter
 

 Models of clock and time transfer noise and 

deterministic properties 

 Examples of use of Kalman filter in time and 

frequency 



   

       

  

 

       

  

 

     

      

Predictors, Filters and Smoothing Algorithms
 

 Predictor: predicts parameter values ahead of current 

measurements 

 Filter: estimates parameter values using current and 

previous measurements 

 Smoothing Algorithm: estimates parameter values 

using future, current and previous measurements 



 

 

 

   
   

 

 

  

 

 

 

 

 

What is a Kalman Filter ?
 

 A Kalman filter is an optimal recursive data 
processing algorithm 

 The Kalman filter incorporates all information that can 
be provided to it. It processes all available 
measurements, regardless of their precision, to 
estimate the current value of the variables of interest 

 Computationally efficient due to its recursive structure
 

 Assumes that variables being estimated are time 
dependent 

 Linear Algebra application 



 Simple Example
 



  Simple Example (Including Estimates)
 



  

  

Estimation Errors and Uncertainty
 



 

 

  

 

 

 

   

 

  

Operation of Kalman Filter
 

 Provides an estimate of the current parameters using 

current measurements and previous parameter 

estimates 

 Should provide a close to optimal estimate if the 

models used in the filter match the physical situation 

 World is full of badly designed Kalman filters 



   
 

 

 

 

 

  

 

 

 

  

 

 

 
 

What are the applications in time and frequency?
 

 Analysis of time transfer / clock measurements where 
measurement noise is significant 

 Clock and time scale predictors 

 Clock ensemble algorithms 

 Estimating noise processes 

 Clock and UTC steering algorithms 

 GNSS applications 



 
  

Starting point for iteration 11 of filter
 



  
 

  

 

   

 

  

 

 

 

   

Five steps in the operation of a Kalman filter
 

 (1) State Vector propagation 

 (2) Parameter Covariance Matrix propagation 

 (3) Compute Kalman Gain 

 (4) State Vector update 

 (5) Parameter Covariance Matrix update 



  

   

  
 

 

 

 
 

  

 

 

Components of the Kalman Filter (1)
 

State vector x 

 Contains required parameters. These parameters 
usually contain deterministic and stochastic 
components. 

 Normally include: time offset, normalised frequency 
offset, and linear frequency drift between two clocks 
or timescales. 

 State vector components may also include: Markov 
processes where we have memory within noise 
processes and also components of periodic 
instabilities 



  

  

   

 

 

Components of the Kalman Filter (2)
 

State Propagation Matrix F(t) 

 Matrix used to extrapolate the deterministic 

characteristics of the state vector from time t to t+t 



  

  

 

 

 

                                                   

  

  

                      

 

 

                                                            

  

Steps in the operation of the Kalman Filter
 
Step 1: State vector propagation from iteration n-1 to n 

)(ˆ)()(ˆ
1


F nn txtx t

Estimate of the state vector at iteration n not 

including measurement n. 
)(ˆ

ntx


)(tF State propagation matrix calculated for time 

spacing t 

Estimate of the state vector at iteration n-1 

including measurement n-1. 

)(ˆ
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Step 1: State Vector Extrapolation
 



 

  

 

  

 

 

 

  

 

  

 

Components of the Kalman Filter (3)
 

Parameter Covariance Matrix P 

 Contains estimates of the uncertainty and correlation 

between uncertainties of state vector components. 

Based on information supplied to the Kalman filter. 

Not obtained from measurements. 

Process Covariance Matrix Q(t) 

 Matrix describing instabilities of components of the 

state vector, e.g. clock noise, time transfer noise 

moving from time t to t+t 

Noise parameters s 

 Parameters used to determine the elements of the 

process covariance matrix, describe individual noise 

processes. 



  

  

 

 

 

                   

 

                                     

  

                   

 

                    

 

Steps in the operation of the Kalman Filter
 

Step 2: Parameter covariance matrix propagation from 

iteration n-1 to n 

Parameter covariance matrix, at iteration n-

)()()()()( 1 n

T

nn tQtPtP FF 


tt

1 including measurement n-1 

State propagation matrix and 

transpose calculated for time spacing 
)(t

T
F

t 

Parameter covariance matrix, at iteration n 

not including measurement n 

Process covariance matrix 

)(tF

)( ntP


)( ntQ



  

  

Uncertainty Extrapolation
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Components of the Kalman Filter (4)
 

Design Matrix H 

 Matrix that relates the measurement vector and the 

state vector using y =H x 

Measurement Covariance Matrix R 

 Describes measurement noise, white but individual 

measurements may be correlated. May be removed. 

Kalman Gain K 

 Determines the weighting of current measurements and 

estimates from previous iteration. Computed by filter. 



  

  

 

 

 

               

 

                 

                  

                 

 

 

 

 

Steps in the operation of the Kalman Filter
 

Step 3 :Kalman gain computation 

  1

)()()()(


 n

T

n

T

nn tRHtPHHtPtK

)( ntR

H
T

H

)( ntP


Parameter covariance matrix, at iteration n not 

including measurement n 

Design Matrix and Transpose 

Kalman Gain 

Measurement covariance matrix 



  

  

 

  

 

  

 

Components of the Kalman Filter (5)
 

Measurement Vector y 

 Vector containing measurements input during a 

single iteration of the filter 

Identity Matrix I 



  

 

 

 

 

                                                                   

  

              

             

             

 

 

 

 

Steps in the operation of the Kalman Filter
 

Step 4 :State vector update 

 )(ˆ)()()(ˆ)(ˆ
nnnnn txHtytKtxtx




Estimate of the state vector at iteration n 

including and not including measurement n respectively. 
)(ˆ

ntx


Kalman Gain 

)(ˆ
ntx



)( nty Measurement Vector 

Design Matrix 



 Step 4 :State Vector Update
 



 

 

 

              

             

                          

 

 

            

  

Steps in the operation of the  Kalman Filter  

 Step 5 :Parameter Covariance  Matrix update  

Kalman Gain 

Design Matrix 

Parameter Covariance Matrix, at iteration 

n, including and not including measurement n 

respectively 

Identity Matrix 
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Steps in the operation of the Kalman Filter 

If Kalman gain is deliberately set sub-optimal, then use
 

   Tnnnn HtKItPHtKItP )()()()(  

Kalman Gain
 

Design Matrix
 

Parameter Covariance Matrix, at 

iteration n, including and not including measurement 

n respectively 

Identity Matrix 



  

  

Step 5: Uncertainty Update
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Constructing a Kalman Filter:
 
Lots to think about!
 

 Choice of State Vector components 

 Choice of Noise Parameters 

 Choice of measurements 

 Description of measurement noise 

 Choice of Design Matrix 

 Choice of State Propagation Matrix 

 Initial set up conditions 

 Dealing with missing data 

 Testing out the filter 

 Computational methods 



 
 

 

 
   

 

 

  
 

 

 

  
 

 

   

Initialising the Kalman Filter 
 Set the initial parameters to physically realistic values 

 If you have no information set diagonal values of 
Parameter Covariance Matrix high, filter will then give a 
high weight to the first measurement. 

 Set Parameters with known variances e.g. Markov 
components of Parameter Covariance Matrices to their 
steady state values. 

 Set Markov State Vector components and periodic 
elements to zero. 

 Elements of H, F(t), Q(t), R are pre-determined 



  

   
  

     
  

 

  

 

  

 

    

Simulating Noise and Deterministic Processes
 

 Use the same construction of state vector 
components x, state propagation matrix F(t), 
parameter covariance matrix P, process covariance 
matrix Q(t), design matrix H and measurement 
covariance matrix R. 

 Simulate all required data sets 

 Simulate “true” values of state vector for error 
analysis 

 May determine ADEV, HDEV, MDEV and TDEV 
statistics from parameter covariance matrix 



  

 

 

          

 

               

 

                              

 

               

 

                      

 

 

 

 

Simulating Noise and Deterministic Processes
 

Where 

)()()()()( 1 nnQnn tetLtxtx F t

)()( n

T

QnQ
tLtLQ 

= Process Covariance Matrix
 

 State Vector at iteration n and n-1 

State Propagation Matrix calculated for time 

= 

respectively 

= 

Q

)()( 1nn txtx

)(tF

spacing t 

 Vector of normal distribution noise of unity 

magnitude 

)( nte



 

  

                       

 

                             

 

                

 

Simulating Noise and Deterministic Processes
 

)()()()()( 1 n

T

nn tQtPtP FF  tt

Process Covariance Matrix at iterations n 

and n-1 respectively 

)()( 1nn tPtP

State Propagation Matrix and 

transpose computed at time spacing t. 

)()( tt
T

FF

spacing t 
)( ntQ Process Covariance Matrix calculated at time 




 

 

           

 

                 

                 

                 

                              

 

 

 

 

 

Simulating Noise and Deterministic Processes
 

)()()()( nnRnn tetLtxHty 

where
 )()( n

T

RnR tLtLR 

Measurement Vector
 )( nty

R
)( nte

Design Matrix 

Measurement Covariance Matrix 

Vector of normal distribution noise of unity 

magnitude 
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ADEV, HDEV, and MDEV determined
 
from Parameter Covariance Matrix and simulation
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Simulating Noise and Deterministic Processes
 

 Test Kalman filter with a data set with same 

stochastic and deterministic properties as is expected 

by the Kalman filter. 

 Very near optimal performance of Kalman filter under 

these conditions. 



 

 

 

 

 

 

Deterministic Properties
 

 Linear frequency drift 

 Use three state vector components, time offset, 

normalised frequency offset and linear frequency drift 
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10  k

Markov Noise Process
 

 White Noise 





Random Walk Noise 

Markov Noise 

Flicker noise, combination of Markov processes with 

exn 
exx nn  1

ekxx nn  1


continuous range of relaxation parameters k 

 Markov noise processes and flicker noise have 

memory 

 Kalman filters tend to work very well with Markov 

noise processes 

 May only construct an approximation to flicker noise 

in a Kalman filter 



  Markov Noise Process 
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Describing Measurement Noise
 

 Kalman filter assumes measurement noise 
introduced via matrix R is white 

 Time transfer noise e.g TWSTFT and GNSS noise is 
often far from white 

 Add extra components to state vector to describe non
 
white noise, particularly useful if noise has “memory” 

e.g. flicker phase noise 

 NPL has not had any problems in not using a 
measurement noise matrix R 
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White Phase Modulation
 



 White Phase Modulation 
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 White Phase Modulation 
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Flicker Phase Modulation
 

-10 Simulated FPM Noise x 10
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ADEV Measurements

HDEV Measurements
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ADEV Theory

HDEV Theory

MDEV Theory
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Measurement noise used in Kalman filter
 



    Measurement noise ADEV, MDEV and HDEV 

10
2

10
3

10
4

10
5

10
6

10
-16

10
-15

10
-14

10
-13

10
-12
ADEV, HDEV MDEV of measurements noise

tau

S
ig

m
a

 

 

ADEV Measurements

HDEV Measurements

MDEV Measurements

ADEV Theory

HDEV Theory

MDEV Theory



 

 

    

 

 

 

Clock Noise
 

 White Frequency Modulation and Random Walk 

Frequency Modulation easy to include as single noise 

parameters. 

 Flicker Frequency Modulation may be modelled as 

linear combination of Integrated Markov Noise 

Parameters 



  White Frequency Modulation 
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White Frequency Modulation 
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Random Walk Frequency Modulation
 



   

  

Random Walk Frequency Modulation 
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ADEV Measurements
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 FFM Noise 
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Flicker Frequency Modulation 
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Periodic Instabilities
 

 Often occur in GNSS Applications 

 Orbit mis-modelling 

 Diurnal effects on Time Transfer hardware 

 Periodicity decays over time 

 Model as combination of Markov noise process and 

periodic parameter 

 Two extra state vector component to represent  

periodic variations 



   GPS Time – Individual Clock (Real Data)
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Input Data 



   GPS Time – Individual Clock (Simulated Data) 
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GPS CV



  ADEV, HDEV, MDEV Real Data 
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  ADEV, HDEV, MDEV Simulated Data 
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ADEV Measurements 
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Kalman Filter Residuals
 

 Residuals )ˆ(  xHy
 Residual Variance (Theory)   THHPV 

 In an optimally constructed Kalman Filter the 

Residuals should be white! 

 Residual Variance obtained from Parameter 

Covariance matrix should match that obtained from 

statistics applied to residuals 
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Kalman Filter Residuals (Simulated Data)
 



 Kalman Filter Residuals (Real Data) 
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Computational Issues
 

 Too many state vector components result in a significant 

computational overhead 

 Observability of state vector components 

 Direct computation vs factorisation 

 Direct use of Kalman filter equations usually numerically stable and 

easy to follow. 

 Issue of RRFM scaling if a linear frequency drift state vector 

component is used 



 

  

  

 

 

 

  

   

Clock Predictor Application
 

 May provide a close to optimal prediction in an 

environment that contains complex noise and 

deterministic characteristics 

 If noise processes are simple e.g. WFM and no linear 

frequency drift then very simple predictors will work 

very well. 



 

    

 

            

  

Clock Predictor Equations (Prediction)
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 F nn txtx t

• Repeated application of above equation. 

•Apply above equations with  calculated 

at the required prediction length 
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Clock Predictor Equations (PED)
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 Repeated application of above equation. 

 Apply above equations with calculated at the 

required prediction length t 
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Example: Predicting clock offset in presence
 
of periodic instabilities
 

 ADEV = PED/Tau 

 Above equation exact in case of WFM and RWFM 

noise processes, and a reasonable approximation in 

other situations 
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ADEV Measurements 
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(PED /Tau) Prediction of Space Clocks 

(simulated data) 
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  ADEV, HDEV, MDEV Real Data 
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(PED /Tau) Prediction of Space Clocks 

(real data) 

 Add plot 
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Kalman Filter Ensemble Algorithm
 

 Most famous time and frequency application of the 

Kalman filter 

 Initially assume measurements are noiseless. 

 Measurements  (Cj – C1), difference between pairs of 

individual clocks 

 Estimates (T – Ci), where T is a “perfect” clock. 

 Parameters being estimated cannot be constructed 

from the measurements: 

 Badly designed Kalman filter. 

 Problem solved using covariance x reduction 
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Advantage of Kalman Filter based Ensemble
 
Algorithm
 

 Potential of close to optimal performance over a range 

of averaging times 

 Clasical Ensemble Algorithms provide a very close to 

optimal performance at a single averaging time 



 

 

   

 

 

  

 

Combining TWSTFT and GPS Common-View 

measurements
 

 Time transfer noise modelled using Markov Noise 

processes 

 Calibration biases modelled using long relaxation 

time Markov 



  Real Time Transfer Data Example 
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 Kalman Filter Estimates 
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 Kalman Filter Residuals 
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Summary
 

 Operation of the Kalman filter 

 Stochastic and deterministic models for time and 

frequency applications 

 Real examples of use Kalman Filter 
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The National Measurement System delivers world-class 

measurement science & technology through these organisations 

The National Measurement System is the UK’s national infrastructure of measurement 

Laboratories, which deliver world-class measurement science and technology through four 

National Measurement Institutes (NMIs): LGC, NPL the National Physical Laboratory, TUV NEL 

The former National Engineering Laboratory, and the National Measurement Office (NMO). 




