2011 Joint Conference of the IEEE International Frequency Control Symposium and the
European Frequency & Time Forum

by

Professor Yook-Kong Yong
Department of Civil & Environmental Engineering
Rutgers University
yyong@rci.rutgers.edu
&
Professor Ji Wang
Piezoelectric Device Laboratory
School of Mechanical Engineering and Mechanics, Ningbo University
wangji@nbu.edu.cn

Theory and Analysis of Quartz Crystal Resonators slide # 1 RUtgerS o




by

Professor Ji Wang
Piezoelectric Device Laboratory
Ningbo University

Theory and Analysis of Quartz Crystal Resonators slide # 2 RUtgerS o



2. Fundamentals of wave propagation
3. Quartz crystal material

4. Thickness vibrations of infinite plates
5.Mindlin plate equations
6. Complication factors

7. Analytical considerations
8. Finite element methods

} Part |l

Theory and Analysis of Quartz Crystal Resonators slide # 3

Rutgers



istory and trends of quartz
crystal resonators
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Snapshot of Worldwide
Quartz Crystal Resonator Market

B Quartz crystal components market will be about
7 billion USD with a growth rate of 7.5% annually.
Year 2009 market is about 6 billion.

B There are about 450 companies and suppliers
globally.

B 30% of piezoelectric devices are in
telecommunications, while the remaining 70%
are in consumer electronics products.

B Japanis supplying the high-end products, while
China is producing components for the consumer
markets with a global market share about 25%.
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Leading Producers of
Quartz Crystal Resonators

10 00 N O U

EPSON-TOYOCM 11.

NDK 12.
KYOCERA KINSEKI  13.
KDS 14.
VECTRON 15.
TXC 16.

TEW 17.
RAKON 18.
. RIVER 19.
10. PERICOM (Taiwan) 20.

Siward (Taiwan)

HELE (Taiwan)

Jingyuan Yufeng (China)
Taitien (Taiwan)

Aker (Taiwan)

TAI-SAW (Taiwan)

ECEC (China)

Hubei Dongguang Group (China)
Nanjing HuaLianXing (China)
Taizhou Abel Electronics (China)
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Piezoelectricity

m The discovery of Piezoelectricity by the Pierre and Jacques
Curie brothers in 1880 is the start of the piezoelectric devices
and applications. The direct piezoelectric effect was observed
in 1880 and the converse effect in 1881.

m After the Curies the first application of the piezoelectric effect
was made by Prof. P. Langevin in France in 1917. Langevin
used X-cut plates of quartz to generate and detect sound
waves in water.

http://www.ieee-uffc.org/frequency control/teaching/vig/vig3.htm
http://www.ieee-uffc.org/main/history.asp?file=bottom
http://en.wikipedia.org/wiki/Piezoelectricity

W. P. Mason, Piezoelectricity, its history and applications, J. Acoust. Soc.
Am. 70 (6), 1561-1566, 1981.
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Piezoelectricity-continued

B In 1919, Cady used a quartz piezoid to control the
frequency of an oscillator and in a series of papers
during the next three years he described the use of
quartz bars and plates as frequency standards and
wave filters. It is generally accepted that Cady was the
first to use a quartz piezoid to control the frequency of
an oscillator circuit.

B It remained for Prof. G. W. Pierce of Harvard University
to show, in 1923, that a quartz plate with only one set
of electrodes could be made to control the frequency
of an oscillator circuit using only one vacuum tube.
Pierce's circuit has probably been used more than any
other quartz crystal oscillator circuit.
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Piezoelectricity-continued

B Prof. K. S. van Dyke, a student and colleague of Cady,
showed in 1925 that the two electrode piezoelectric
resonator is the electrical equivalent of a series
resonant circuit shunted by a capacitor.

B In 1923 the Bell Telephone Laboratories established a
quartz laboratory and the General Electric Company
did likewise the following year. One of the individuals
who recognized the potential of the quartz crystal
unit was August E. Miller.
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Piezoelectricity-continued

B In 1923 Miller left the optical business where he had
become an expert in grinding quartz lenses to go into
the business of making quartz crystal blanks for
amateur radio operators or "hams". It appears that
Miller may have been one of the first individuals to go
into the business of making quartz crystal units.

B n 1926 the A. T. & T. radio station WEAF (no longer in
use) in New York City became the first radio station in
the United States to control its frequency with a quartz
crystal unit. Within a few years all radio stations went
to crystal control thus providing another small market
for quartz crystal units.
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Piezoelectricity-continued

B Efforts to develop a practical unit having a
low frequency-temperature coefficient were
successful in 1934 when the AT- and BT-cuts
were discovered independently by Koga in
Japan, by Bechmann and Straubel in
Germany and by Lack, Willard, and Fair in the

United States.

B Two years later Baldwin and Bokovoy of RCA
introduced the V-cut.
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Piezoelectricity-continued

B The 1939 decision of the Armed Services of the United
States to convert its radio equipment to crystal
control resulted in the creation of an industry which
ultimately played an important role in the victory of
the Allied Forces over the Axis Powers.

B If any date can be ascribed to the beginning of the
quartz crystal industry in the United States it is
probably late October or early November 1941 when
the Quartz Crystal Section (QCS) was organized in the
Office of the Chief Signal Officer (OCSIGO).
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Piezoelectricity-continued

B By 1943 about 130 manufacturers were engaged in the
production of crystal units. Twenty three of these were
in the Chicago area, 20 in the New York area, 15 in the
Carlisle area and 14 in the Kansas City area. The
remainder were scattered over 20 states from Oregon
to Florida and California to Massachusetts.

B The supervision of so many small plants, distributed
over such an area was a major problem and the
members of the staff of the QCS spent much time on
travel duty instructing the new manufacturers, helping
them with technical problems, correlating test
equipment and settling arguments between them and

the Signal Corps Inspectors.
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Piezoelectricity-continued

B The field of piezoelectricity has always been, and
continues to be ignored by the Schools of Electrical
Engineering. Quartz crystal technology has been
treated as an art, or even worse, as black magic.

B \With the exception of the students who have received
formal training at Northern Illlinois University under Dr.
W. E. Newell and at Colorado State University and
McMurry College under Dr. Virgil E. Bottom, most of
the people in the industry have learned from one
another going back to the handful of men who started
the industry who had, themselves, learned in the
School of Experience.
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Piezoelectricity-continued

B Academic neglect of the field is also shown by the dearth of
literature available to the newcomer.

B The classic work of Cady (Piezoelectricity: an introduction to the
theory and applications of electromechancial phenomena in crystals,
McGraw-Hill, 1946), the books of W. P. Mason (Piezoelectric crystals
and their application to ultrasonics, D. Van Nostrand, 1950) and the
compilation of 1942 papers by Heising (Quartz Crystals for Electrical
Circuits: Their Design and Manufacture, D. Van Nostrand, 1946 )
include practically everything which has been published in this
country.

B The book publishers naturally have been reluctant to make the
necessary expenditures to publish books for a nonexistent clientele.

B Studies on the high frequency vibrations of quartz crystal plates by
Koga, Ekstein, and a few others were not well documented and
summarized.
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Piezoelectricity-continued

Focused studies on wave propagation in piezoelectric plates are
pioneered by Prof. Raymond D. Mindlin of Columbia University.

The first paper on the late Mindlin plate theory was published in
1951 (R. D. Mindlin, Influence of rotatory inertia and shear on
flexural motions of isotropic, elastic plates, J. Appl. Mechanics, 18,
31-38,1951).

The Mindlin plate theory is presented by a monograph prepared for
the US Army Signal Corps in 1955 and published in 2007 (R. D.
Mindlin (edited by Jiashi Yang), An Introduction to the Mathematical
Theory of Vibrations of Elastic Plates, World Scientific, 2007).

Extensive studies on the high frequency vibrations of piezoelectric
plates have been done for the quartz crystal industry by Profs. R. D.
Mindlin, H. F. Tiersten, P. C. Y. Lee, and others.
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Piezoelectricity-continued

B As a consultant to the Bell Telephone Laboratories, Prof.
Harry F. Tiersten of Rensselaer trained engineers at the
Piezoelectric Crystal Device Department there and the
lecture notes have been published as an important
reference on the fundamental theory and analytical
techniques (H. F. Tiersten, Linear Piezoelectric Plate
Vibrations, New York, Plenum Press, 1969).

B Prof. Tiersten has made important contributions to the
quartz crystal device industry through his life-time
research and training of engineers.

http://www.ieee-uffc.org/frequency control/memoria.asp?name=tiersten

Theory and Analysis of Quartz Crystal Resonators slide # 17 Rutgel”s


http://www.ieee-uffc.org/frequency_control/memoria.asp?name=tiersten
http://www.ieee-uffc.org/frequency_control/memoria.asp?name=tiersten
http://www.ieee-uffc.org/frequency_control/memoria.asp?name=tiersten

Piezoelectricity-continued

B Prof. Peter C. Y. Lee of Princeton started research on piezoelectric
plate vibrations with Prof. Mindlin and continued with extensive
contributions to the theoretical and practical problems in the
analysis of quartz crystal resonators.

B The Lee plate theory (P. C. Y. Lee, J. D. Yu, and W.-S. Lin, A new two-
dimensional theory for vibrations of piezoelectric crystal plates with
electroded faces, J. Appl. Phys., 83 (3), 1213 — 1223, 1998; P. C. Y.
Lee, S. Syngellakis, and J. P. Hou, A two-dimensional theory for high-
frequency vibrations of piezoelectric crystal plates with or without
electrodes, J. Appl. Phys., 61 (4), 1249 — 1262, 1987) takes the same
approach as the Mindlin plate theory but with certain advantages.

B Many students of Prof. Lee are also active in piezoelectric acoustic
wave device industry.
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Future Trends

B Continuing and accelerating shrinkage in resonator size
B IC compatible fabrication process

B Quartz MEMS

B Multilayered thin film resonators (FBAR etc)

B All these technology require improved analysis and
modeling based on existing (like Mindlin plate theory) or
emerging theory (like nano- related) and sophisticated
solutions techniques (like the finite element method) to
provide design guidance with increased difficulties in
prototyping and experiments.

B Besides, the fundamental theory and approximation
solutions will be important in understanding the
functioning mechanism and phenomena.
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Piezoelectricity-continued

Research work on the high frequency vibrations of piezoelectric plates are
still being performed with industrial support with major activities at:

Prof. Yook-Kong Yong of Rutgers University.
http://www.linkedin.com/pub/vook-kong-yong/4/a27/186

Profs. Hitoshi Sekimoto and Yasuaki Watanabe of Tokyo Metropolitan
University.

http://ee-serv.eei.metro-u.ac.jp/faculty/y.watanabe/eng.php

http://ee-serv.eei.metro-u.ac.jp/faculty/h.sekimoto/eng.php

Prof. Ji Wang of Ningbo University.
http://piezo.nbu.edu.cn/wangiji/jiwangENS.PDF

Prof. Jiashi Yang of University of Nebraska-Lincoln.
http://www.unl.edu/ncmn/faculty/yang.shtml
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. Fundamentals of wave
propagation
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Wave Propagation

References on Wave Propagation in Piezoelectric Solids

1.

2.

3.

H. F. Tiersten, Linear Vibrations of Piezoelectric Plates, New York:
Plenum Press, 1969.

R. D. Mindlin, High frequency vibrations of piezoelectric crystal plates,
Int. J. Solids Struct. 8, 895-906, 1972.

R. D. Mindlin, Frequencies of piezoelectrically forced vibrations of
electrode, doubly rotated, quartz plates, Int. J. Solids Struct. 20 (2),
141-157, 1984.

Jiashi Yang, An Introduction to the Theory of Piezoelectricity, Springer,
2005.

Jiashi Yang, The Analysis of Piezoelectric Structure, World Scientific,
2006.

B. A. Auld, Acoustic Fields and Waves in Solids, Krieger Publishing
Company, 1990.

D. Royer and E. Dieulesaint, Elastic Waves in Solids, Springer, 2000.
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Sij = E(ui’j +ll]"i), l,] = 1,2,3,
Ek = _QD,k»k = 1,2,3,

where

u;: displacements,

@: electrical potential,
S;j: strains,

E,: electrical field.
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vergent equations

of motion and charge equation)
Tij,i — pu],l,] — 1,2,3,
Dk,k — O,k — 1,2,3,

where

p: density of material,
T;;: stresses,

D,: electrical displacements.
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Constitutive (algebraic) equations

Tij = Cijg1 Sr1 — €xij Ex.

Di — eijk S}'k + EikEk, i,j, k,l — 1,2,3,
where

Cijki - €lastic constants,
exij: piezoelectric constants,
dielectric constants.

Theory and Analysis of Quartz Crystal Resonators slide # 25

Rutgers



1 1
H = 5 cyjr Sij Sk — ey EiSie — 5 €5 Ei E;

2 2 -
o 0H
l aSl]’
D, = o k,l=1,2,3
A aEi;l)]) y U — 44,9,
Note the internal energy of a piezoelectric solid is
1 1 o
U= Ecl']'kl SijSkl + Egij El'E},l,], k,l = 1,2,3.
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Wave Propagation-continued

The above equations have 22 variables and 22 equations,
representing a well-posed boundary value problem to be
solved with proper boundary conditions for the
mechanical and electrical variables.

Finally, equations of motion of mechanical displacements
and charge equation of electrical potential are given as
Cijkl Uk li + €kij Pri = PU;,

ikt Ukt — EikPri = 0,1,),k, 1 =1,2,3.
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3. Quartz crystal materials
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Quartz Crystal Materials

B The commonly used piezoelectric materials are crystals
with certain special structures. For piezoelectric
acoustic wave resonators, most popular materials are
quartz crystal and ceramics.

B First of all, we adopt the abbreviated (compressed,
contracted, compact) notations of stresses and strains
along with material constants to give constitutive
relations as (H. F. Tiersten, Linear Vibrations of
Piezoelectric Plates, Plenum Press, 1969; R. D. Mindlin,
An Introduction to the Mathematical Theory of
Vibrations of Elastic Plates, World Scientific, 2007;
ANSI/IEEE Std 176-1987, IEEE Standard on
Piezoelectricity, IEEE, 1987.)
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p = Cpgoq ~ CkpCko P4 =
D, =¢S5, + s Er, i,k =1,2,3.

The rules of correspondence of the subscripts are
follows:

11-1,22-2,33-3,23 54,13 - 5,12 - 6.
Earlier equations can be simplified with these newer
notations.

)y=IY) BRI ) =)
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€31 €32 €33
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Linear piezoelectric plate vibrations, Plenum Press,

pPq
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86.74 —8.25 27.15 —3.66
129.77 —7.42 5.70
102.83 9.92 9 2
X 10° N )
38.61 0"N/m
68.81  2.53
: 29.01 -
0.171 —-0.152 -0.0187 0.067
0.108 —0.095 |C/m?,
i —0.0761 0.067
39.21 2
~12 2 €26
39.82 0.86 | X 107*“C/Vm, k5, = = 0.0078126.
0.86  40.42 €622
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there are other forms of constitutive relations which
are frequently encountered as

Sii = St Ty + diij Epe,

D; = dyy Ty + &) Ex;

Sij = Sil]?kl Ty1 + Gkij D,

E; = =it Tia + By D

Ty = Ciry Skt — hiij Dies

E; = —hy S + Bij. Di-
The superscript E (D and T) implies constant electric
field (electrical displacement field and stress field).
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@ = @oexplilk(lyx; + lrx; + l3x3) — wt]},
where

A;: amplitudes of displacements,
@o: amplitude of electrical potential,
w: vibration frequency,

t: time,

k: wavenumber,

l;: wave propagation direction,
x;: coordinates.
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pv*A; = [ A,

I:i =I—Z +yi)/l,

&

Cijki = Cijrr +

The Christoffel equation is

(I — pv* 8;)4, =0
What we can obtain from these equations are the three velocities of
plane waves. For most materials, there are longitudinal and shear

waves velocity solutions from this equation.

http://en.wikipedia.org/wiki/Crystal_oscillator
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. Thickness Vibrations o
Infinite Plates

Theory and Analysis of Quartz Crystal Resonators slide # 37 RUtger S



Fig. 1 A typical elastic plate with coordinates.
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thickness vibration modes with displacements in the
form of
u; (xz,t) = u; (xp)e't, j = 1,2,3.
For monoclinic (Y-cut of quartz crystal) materials,
we have equations of motion as
CopU1,22 = PUI,
CopUp 2 + Co4U3 27 = Ply,
C42Uz 22 + C44U3 22 = PU3,
and traction-free boundary conditions are
To,1 =Ty, =Ty3 = 0atx, = +b.
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2all thal displacemelt Uq naepenaer 'OM otnher vipration n
the first equation, by assuming u; = A; sin &éx, e'“t, we have
T\2C
2 — () 286
@ (Zb) P ’
This is the thickness-shear vibration frequency. This equation has been used in the
determination of the thickness of crystal plate with given frequency as

_ 1 Ce6
2f | p’
in resonator design. With known material constants p = 2649kg/m3and cg =

29.01 x 10°N/m?, this has been known as frequency constants

1654.6376
b = lm.

f (MHz)

2b
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monoclinic material (rotated Y-cut quartz) under

electrical field in the thickness direction, we have the

differential equations as
CosU1,22 T €260 22 = PUy,
Co2Up 22 + CoaUz 2 = Py,
C4pUp 22 + C4qU3 22 = PUsz,
e26U1,22 — €229 22 = 0,

and the boundary conditions are

Ty1 = Tyy = To3 = 0,9 = +@e't,atx, = +b.
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assume
Uy = U3z = O,

ug (2, t) = uy (xxp)e'",
@(x3,t) = @(xz)e'",
and the substitution of above expressions into the

differential equations will give

2
€26
2., _
(C66 + g—> U2 + pwuy =0,
22

€26
© =—1u +A4;x, + A,.

€22
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Thickness Vibrations — continued

Now we assume the displacement is antisymmetric function
u; = Asinéx,e'®t.

The differential equation is satisfied provided

9226

_ o9

Ce6” = PW?,Coe = Cop + P
22

The resonance frequency Is obtained by setting the
coefficient of the equations to vanish, ie

Co6E22 ¢b
tanéb = ¢b = —-.
3226 k%6

This equation shows that wavelengths, consequently the
frequencies, of the overtone thickness modes under
piezoelectric driving are no longer integral fractions of
fundamental mode. They have been modulated by the
electromechanical coupling factor of the material.

Theory and Analysis of Quartz Crystal Resonators slide # 43 Rutgel”s

eeeeeeeeeeeeeeeeee



Normalized Frequency Q

| | | | |
10 - - - - 2 4 6 8 10
Im(X) Wavenumber X Re(X)

Dispersion relation of an AT-cut quartz crystal plate.
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4. Mindlin plate equations
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Mindlin Plate Equations

The plate theories for the high frequency vibrations of plates are the Mindlin
plate theory (R. D. Mindlin, An Introduction to the Mathematical Theory of
Vibrations of Elastic Plates, World Scientific, 2007), Lee plate theory (P. C. Y.
Lee, J. D. Yu, and W.-S. Lin, A new two-dimensional theory for vibrations of
piezoelectric crystal plates with electroded faces, J. Appl. Phys., 83 (3), 1213 —
1223, 1998; P. C. Y. Lee, S. Syngellakis, and J. P. Hou, A two-dimensional theory
for high-frequency vibrations of piezoelectric crystal plates with or without
electrodes, J. Appl. Phys., 61 (4), 1249 — 1262, 1987), and Peach plate theory
(R.C. Peach, A normal mode expansion for the piezoelectric plates and certain
of its applications, IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 35, 593—611,
1988), which all are from the expansion of displacements in the thickness
coordinate with basis functions representing the particular vibration modes
we are interested in. This method, of course, had been first used by Cauchy,
but the successful implementation and analysis was pioneered by Mindlin.
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The development of the Mindlin plate theory starts from the power series expansion of

displacements in the form of (R. D. Mindlin, An Introduction to the Mathematical Theory

of Vibrations of Elastic Plates, World Scientific, 2007)

w; (X1, %2, X3,t) = Z uj(") (x4, %3, )x%,j = 1,2,3.
n=0

Consequently, the strain components will be

1 1 D] ;
Sij = Z Sy 8,8, = 2 [uz(? +u) +(n+ 1) (52i117-(n '+ " ))] Lj =123

Theory and Analysis of Quartz Crystal Resonators slide # 47 RUtger S



vV
by substituting the displacement into the equation of motion and integrating
over the thickness, we have

ij,i

-1 .
T —nr~D L ™ = p Z B ™,
m=0

where

Tij(n) - Z ancijkISIEIm)’

m=0
F =" [T, () - (1T, (~b)}
2bm+n+1
——— ., M+Nn even,
B.n =im+n+1
0, m+n odd.
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This also gives the two-dimensional constitutive relations with corrections as (Ji

Wang, J-D Yu, and Y-K Yong, On the correction of higher-order Mindlin plate

theory, Int. J. Appl. Electromagnetics Mech. 22, 83-96, 2005.)
T(") Z B, Kk (m) 1u§"}) + cpzrcgm)(m + 1)u§m+1) + cp4ic£m)(m + 1)u§m+1) +

cp5u§m+1) + Cyeic™ [ugr{) + (m + Dui™tV }
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Mindlin Plate Equations- continued

The boundary conditions for the Mindlin plate
equations are that with the traction-free faces being
considered, we need to prescribe either mechanical

displacements uj(")(i =1,2,3andn =0,1,2,...)

Or Sstresses Tp(")(p =1,2,3,4,56 andn =0,1,2,---)

on the cylindrical surfaces.
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crystals are

Cllul 1 + Clzu

T = 2p|
79 = 2p |
T = 2p |
7O =2p|
T = 2b
T = 2b

(0) (1)

+ C13u + C14 (u

_cmugl) + czzu( ) + ngu(o) + Cg (u(o)
_c31u§1) + C32u( A c33u ) C34 (ugog
_c41u§1) + c42u( ) + c43u + Cy4 (ug03)
Cs5 (u + Uy 1)) + Cs6 (ugol) )) ,
_665 (u( ) + Uy 1)) + Cg6 (ugol) (1)) :
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1 1
Tl( ) = —3 (C1 ugl) + Clgu( ) + C14ug 3))
2b3
1 1 1
TZ( ) — = (c21u§1) + c23u( ) c24u§ 3))
1y _ 2b° o © @
T3 = _3 (C3 ~+ C33u ~+ C34u2 3)
2b3
1 1
T4( ) = —3 (C4_ (1 ) + C4_3u( ) + C44ug 3))
2b3 ¢
1 1
TS( ) == C55(u +u31))+c56u( )] ,
2b3 ¢ -
1 1 1 1
T6( ) = T _C65 (u§’3) ( )) + C66u( ) .
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19 47 + K = 2pi?

7Y + 1Y + B = 2hpid?”,
7Y + 19 + EY = 2bpi;
R
To) + 15 — T + B = sz3 piis",
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zeroth-order equations with correction factors as

T(O) = 2b [C11u1 1t clzkgo)ug ) 4 Clgu(O) + c141c(0) (ugog (1))],

T(O) = 2b1c§0) [Cz1u1 1 T szkgo)ug )+ c23u(0) + 024’€(0) (ugog) gl))]»

T,% = 2b [Csllﬁ ) + c3z05 Uy + Ca3 ugog + c34ky ) (ugog (1))]'

T(O) = ZbKL(LO) [c41u§01) + C47 Kgo)ugl) + c43u(0) + c44;c(0) (ugog §1))] ’
(0) _ 2} [c (u(O) (0)) n C56K(0) (augol) (1))]’

T(O) = ZbKéO) [ 5(u(0) (O)) + Cq6 K(O) (augol) §1))];

where the correction factors are

2
=« = ,/’1’—2 ~ 0.90689968, o =1.02.
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Comparison of dispersion relations from the exact solutions
and the Mindlin plate equations with correction.
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Mindlin Plate Equations- continued

The essence of the straight-crested wave assumption is that the
displacements have one spatial variable for much aggressive simplification.
First of all, we start with the assumption of the thickness-shear
displacement as

= A coséx;e'“t,

ne
for x; coordinate in the center of plate. It implies that the
thickness-shear displacement is confined in the center of the plate, a fact
which is also viewed as the unique energy trapping feature. Then through

the coupled equations, we can easily obtain other displacements as

0 . -
ug ) = A,sinéx, el¢t,
0 . -
ug ) = Assinéxel®t,

1 . -
ug ) = A,sinéx et
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Mode slhapes of B V\Ilith a/b=22.l95 and Q=1I.0039
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Mindlin Plate Equations- continued

With the frequency spectra, we can always find the optimal
parameters of a plate. From the spectra, the best plate length will be
the middle of a span between two crossings by the flexural
frequencies. With the one-dimensional solutions of the coupled
thickness-shear and flexural modes, we can get the optimal length of
an AT-cut quartz crystal blank as (Ji Wang and Wenhua Zhao, The
Determination of the Optimal Length of Crystal Blanks in Quartz
Crystal Resonators, [IEEE Transactions on Ultrasonics,
Ferroelectrics, and Frequency Control, 52 (11), 2023-2030, 2005.)

a 1

— = (n + —) 1.6056,n=1,2,3,4,---,N.

b 2
This can be used as the initial design. More completed calculations
have been carried out with equations of more coupled modes.
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trigonometric to take the advantage the thickness modes are in trigonometric functions.  Since its
establishment in 1980s, there have been some improvements in the end of 1990s. The final forms of
displacements now are (P. C. Y. Lee, J. D. Yu, and W.-S. Lin, A new two-dimensional theory for vibrations
of piezoelectric crystal plates with electroded faces, J. Appl. Phys., 83 (3), 1213 — 1223, 1998; P. C. Y. Lee,
S. Syngellakis, and J. P. Hou, A two-dimensional theory for high-frequency vibrations of piezoelectric
crystal plates with or without electrodes, J. Appl. Phys., 61 (4), 1249 — 1262, 1987; P. C. Y. Lee, Nicholas P
Edwards, Wen-Sen Lin, and Stavros Syngellakis: Second-Order Theories for Extensional Vibrations of
Piezoelectric Crystal Plates and Strips, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency
Control, 49(11), 1497-1506, 2002)

X2

(0) @) o5 ;
W (x1,%x2,%3,t) = —u, (X + z 1 —?) j =123,

ni X
(n) 2
@(x1,%5,%3,t) = E @\ cos — > (1 b)
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Peach Plate Equations

The Peach plate theory (R.C. Peach, A normal mode expansion
for the piezoelectric plates and certain of its applications, /EEE
Transactions on Ultrasonics Ferroelectrics and Frequency Control
35:593-611, 1988), is based on the normal mode, or eigenmode,
expansion of displacements and electrical potential by Peach
resulted in a system of two-dimensional equations with limited
modes associated with the frequency range. The eigenmodes
are also given in trigonometric functions because they are the
solutions of eigenmodes from the three-dimensional equations
of piezoelectricity. As remarked by the author, the plate theory
is more complicated from the appearance and the results have
been accurate with the fundamental and overtone modes of the
thickness-shear vibrations.
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4. Complication Factors
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Temperature Effect

We all know that quartz crystal resonators are sensitive to
temperature change, and frequency-temperature relation is one of the
important properties in applications. The thermal effect is a typical
nonlinear problem with the origin traced to the thermal properties of
quartz crystal. Consequently, the study of thermal effect requires the
availability of higher-order elastic constants dependence on the
temperature to predict the known cubic feature of the thickness-shear
vibration frequency. Apparently, as plate theories have been widely
adopted for their natural appealing and usefulness in the analysis of
qguartz crystal resonators with plates as the core element, the
consideration of thermal effect in the framework of the Mindlin plate
theory has been presented and utilized. In particular, the finite
element implementation of the Mindlin plate equations with the
consideration of thermal fields has been successful in the prediction of
the frequency-temperature relations.
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theory is (Lee, P.C.Y., Yong, Y.-K.: Frequency—temperature behavior of
thickness vibrations of doubly rotated quartz plates affected by plate
dimensions and orientations. J. Appl. Phys. 60, 2327-2341, 1986)

—1 E . . .
ﬁik t]g;?, - n’ﬁl tkz ) + ﬁlk (n) — p an ul(m) ) l)])k — 1)2;3;
m=0

where the linear thermal expansion coefficients

,sz = Sy + afy,
ab = al(,})@ + a(Z)QZ + a(3)03
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tl(]n) = z an Dl]kl e,gn),
m=0

1 1 1
el = = [Baculyy + Bucul + (n+ 1) (6208w + 83y BV,

where thermal elastic constants Dy, (i, ), k, 1 = 1,2,3) are
1 2 3 o
Dyt =y + dig O + dijo 02 +diy) 03,0 =T — 25°C.
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|j 1] , 10 /oC 10~ /oCZ (3) 10—12 /oc3

11 13.71 6.5 -1.9

22 13.71 6.5 -1.9

33 1.47 2.9 -1.5
Sources:

R. Bechmann, A. D. Ballato, and T. J. Lukaszek, Higher order
temperature coefficients of the elastic stiffnesses and compliances of
Alpha-quartz”, Proc. of the IRE, 50 (8), 1812-1822, 1962.

Yook-Kong Yong and Shigeo Kanna, IDT geometry and crystal cut effects
on the frequency-temperature curves of a SAW periodic structure of
quartz, Proc. of the 1998 IEEE International Ultrasonics Symposium,

223-228.
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€y
Dpq

(2)
Dpq

3 _
qu _

—2.43330 —0.0175359

X 7 o . m?2
—0.396439 | * 107 N/C - m?,
—0.366579 —0.855763J
—0.0805899
—1.01190 —1.79202 —1.64226  0.503413
—270317 0155307 —0.613946
_274640  0.260943 A Jor? 2
—0.204786 x 107 N/*C% - m?,
—0.943378 —0.994985
—0.0319257.
0537020 227503 —0.955304 —0.182843
_222281 0769925 0559134
1.04705  —0.320487 N o3 2
0.557183 x 107 N/*C% - m?,
_1.87182 0.812975
0.653236 -
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thickness-shear and flexural vibrations of contoured quartz resonators, J. Appl. Phys. 80

(6), 3457-3465, 1996,)

First of all, the thermal parameters for Y-cut of quartz crystals are the following:

B1 = Bi1, B2 = B22, B3 = B33, B4 = B23, P12 = P13 = 0.

The first-order equations of motion:

0) , (0 0 (0
B1 (t1(,1) + tés’)) + B R = 2bpiy”,

0 0 0 0 0 0 .. (0
B2 (689 +689) + Ba (689 + 52 ) + B2 B + BuF® = 2bpii?,

0 0 0 0 0 0 ..(0
Ba (6 + 69 ) + Bs (65 + £9) + BB + B = 2bpir”,

2b3

1 1 0 0 .. (1
B (63 +689) = it + BR® = - pi®,

€] (D €] (1) (0) (0) (1) (D 2b° . (1)

2b

1 1 1 1 0 0 1 1 . (1

B (67 + t53) + B3 (65 + 67) = Buts” = Bst¥ + BuFSV + By FY = ——piis?,
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t; " =2b|Dy1frug; + (Dy3fs + KDy fo)uy 5 + (D3B3 + kD2a fa)us 3
1 1
k(D225 + Daa B )uS” + K(Daz By + Dyu B )] ,
© — 25 (Do 6.4 + (D Do 8@ 4 (D Do 3.5 ®
t3 = 218Uy 1 + (D23 By + kD2 Bo)uy 5 + (Da3fz + kD2afa)us 3 +
1 1
k(D3585 + Dag B U + K(Dsy By + Dag B )] )
© — 25D 5.4 + (D D130 + (D Do 8.1u®
ty = 21B1uy 1 + (Da3 By + kD2 Bo)uy 5 + (Da3fz + kD2afa)us 3 +
1 1
k(Daz By + Daa BIUS” + K(Dyz By + Dy B )] )
t{” =2b [Dssﬂlug?s) + (Dss By + KDsaﬁz)ug(,? + (Dss B3 + KD56ﬂ4-)u§(,)1) + KDseﬂﬂél)].
téo) =2b [Desﬂlug)g) + (Des s + KDeeBz)ug? + (Des Py + KDssﬁz)ug_)l) + KDsaﬁﬂil)];

2b3 1 _ _ _ _
1 1 1 1
t1( U= =3 [D11ﬂ1u§,1) + (D138 + D14/32)u§'?3 + (D135 + D14B4)u§'3)],

2b3% [ _ _ _ _ _
1 1 1 1
tz( = KN [Dz1ﬁ1u£,1) + (D3P + D24ﬂz)ug,3) + (D3P + D24,84)u§'3)],

2b3 _ _ _ _ _
1 1 1 1
té = =3 [D31/3'1u£1) + (D330 + D34.32)u§,3? + (D33f3 + Dz4ﬁ4)u§,§].

2b°% _ _ _ _ _
1 1 1 1
ti )= 3 [D4lﬁlu£,1) + (Dy3fs + D44B2)u§'3) + (D3P + D44[)’4)u§’3)],
2b3 _ _ _ _
1 1 1 1
eV = =3 [Dssﬁ1u§,3) + (Dss5fs + Dsaﬁz)ug,g + (Dss5P3 + D56.34)u§,1)]'
2b3 _ _ _ _
1 1 1 1
té = 3 [Dasﬁ1u§,§ + (DgsPs + Dssﬁz)ug,g? + (Dgsfs + D66:84)u§,1)];

@™ 5 _p _DobatDubs
12" Y DyyPBy + Dyyy
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e, = fou, AUs 7,
e?(,o) = ,B4u(0) + Bgug()?? )
e® = gul® + ) + us + BuD,
o = g + ) + o),
© = gl + 5 + D
o = )
e = 28,u®,
oD — a3 + ),
(1) ﬁzu(l) + ,3411;13),
(” = pruly + s + paull,
oD = ol + gl

, 1
Zug ) — _ D21,31u1 { + (Dy3By + D24ﬂz)u2 3+ (DB + D24,82)u( )

D87 + Dy fs [
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thickness-shear and flexural vibrations under
temperature variation are

Bt + B E© = 2bpi?,

Zb3
1 0 1 .(1
0 0 1
té ) 2K2bD66 (,Bzu( ) 4 ,Blu( )),
2b3
1 1
(1) _ : D, 1 81”( )
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(f-F )/ f, ippm)

.496

Effects of quartz crystal blank parameters on the frequency-temperature relation

(a/b,: electroded region; &: rotation angle)

P.C.Y. Lee and J. Wang, Frequency—temperature relations of thickness-shear and
flexural vibrationsof contoured quartz resonators, J. Appl. Phys. 80 (6), 3457-3465,1996.

Rutgers
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Ji Wang, Jiun-Der Yu, Yook-Kong Yong, and Tsutomu Imai, A finite element analysis of
frequency—temperature relations of AT-cut quartz crystal resonators with higher-order
yiindlin plate theory, Acta Mechanica, 199(1-4), 117-130, 2008
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Electrode Effect

B Electrodes on the faces of quartz crystal plates are essential for the making of
resonators, and the roles are beyond the electrical driving of piezoelectric solid.

B One of the important factors of the outstanding performance of quartz crystal
resonators, energy trapping, which confines the vibration energy in the region
under the electrodes, is also defined by the presence of electrodes which
modifies the thicknesses of plate in different regions.

B Referring to the dispersion curves for the fundamental thickness-shear
vibration mode, we can clearly observe that the wavenumber solutions are
imaginary for frequency below the cut-off value are real above the cut-off
frequency.

B With given displacement solutions in trigonometric functions and noting the
fact that the frequency of a quartz crystal plate with partial electrodes will be
somewhere between the electrode part (less than 1) and the crystal plate
(exactly 1), the displacement solutions in the electrode portion will be
trigonometric functions to maintain a constant vibrations while in the crystal
blank which will be hyperbolic trigonometric functions that quickly diminish at
the ends. This means the confinement of thickness-shear vibrations is realized
by both electrodes and beveling at least in a typical quartz crystal resonator.
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Li-jun Shen, Exact thickness-shear resonance frequency of electroded piezoelectric crystal plates, J. Zhejiang University Science,

6A (9), 980-985, 2005; Jiashi Yang, Honggang Zhou, and Weiping Zhang: Thickness-Shear Vibration of Rotated Y-cut Quartz

Plates with Relatively Thick Electrodes of Unequal Thickness, IEEE Transactions on Ultrasonics Ferroelectrics and Frequency

Control, 52 (5): 918-922, 2005)

— 2Bk
anétan P 5—666,

with the consideration of piezoelectric effect, the frequency equation will take the form of
2B K
&tanftan—& = — [(1 + k2,)& — k3, tan €],

where the key parameters are

2 2
k 2 _ €2
» K26

Ce6€22

The accurate solutions of the thickness-shear vibration frequency are important in the validation of plate theory and precise

design of resonators.
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Electrode Effect — continued

Relatively Thicker Electrodes with Mindlin Plate Theory (Ji Wang, Consideration of stiffness
and mass effects of relatively thicker electrodes with Mindlin plate theory, IEEE Transactions

on Ultrasonics, Ferroelectrics, and Frequency Control, 53 (6), 1218-1221, 2006)

2pb
p,g,?)=p[1+(m+n+1);%]=p[1+(m+n+1)R],

2Cyjp E]
Cijki b ’

(m,n)

where R = (2pb)/pb is known as mass ratio. The plate equations with the density and

stiffness of electrodes considered can be obtained by replacing p and c¢;;; with the newer
definitions in the two-dimensional expressions. These equations will be capable to consider
the effect of the electrodes.

Our experiences indicate that for thin electrodes the mass effect will be enough. But as the
resonators shrink in their sizes, the electrodes will be more important and the validation of the

smass and stiffness consideration will be important.
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Electrode Effect — continued

One important result which is familiar to us is the principle for the
determination of electrode size with the Bechmann’s number, which
specifies the minimum and optimal lengths of electrodes based on the
energy trapping consideration. The essential argument is that for the
resonator to have better property, it should trap the inharmonic
modes under the electrode. It will be better if the only one mode is
trapped with a minimum electrode. The Bechmann’s number is first
presented as an empirical observation, but later efforts have been
successfully proven that such a parameter does exist and can be
obtained analytically. The derivation here is from Mindlin (R. D.
Mindlin, Bechmann’s number for harmonic overtones of
thickness/twist vibrations of rotated-Y-cut quartz plates, Journal of the
Acoustical Society of America, 41 (4, Part 2): 969-973, 1967).
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and consequently we have strain components as
SI=SZ=53 =S4=O,
ou U

S5 =—,55 = —.
. 6X3 6 aXZ

The stress components for monolithic crystals are
T1=T2=T3=T4=O,

aUu aUu
Ts = C556_x3+ Cs6 9%,
ou ou

Te = +c
6 = C65 73— 9% 66 5 Xy’
and the equation of motion will be reduced to

92U 92U 92U .
+ 2 + = —w’pU.
C66 77 %2 7 C56 %1% C66 77 6x3 w=p
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w?p = ceen* + Css—a 2.

With traction-free boundary conditions

Z_Cee(”

2 20h\?
) [ ()]

P

For electroded plate, we have

_ T [Cep
h== [—
¢ 2\/)’55

Eventually, after algebraic manipulations, the Bechmann’s number is

2w
2h =

< Brr =

- (2

1 2}’55
m\/— Cep

where R is the mass ratio and m is the order of the overtone. For AT-cut of quartz, we have

T =

2.17

mvR’

The empirical numbers are

BTT -

M(m)
mVR '

,M(1) = 1.41,M(2) = 2.83,M (3) = 4.24,M (4) = 5.66.
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given by Mindlin and Lee (R. D. Mindlin and P. C. Y. Lee,
Thickness-shear and flexural vibrations of partially plated, crystal
plates, Int. J. Solids Struct., 2: 125-139, 1966)

W 3+7T2C66 16 — 123
h—mn 71 ~ 1.om, Y11 = €11, m = 1,4,5,

With the consideration of effect of electrodes, optimal length
should be

1 4y 1 275

i njg il VR VR T T AL

This result has been validated by experimental data of Curran and
Koneval (D. R. Curran and D. J. Koneval, Factors in the design of

VHF filters, Proceedings of the 19" Annual Symposium on
Frequency Control, 213-268, 1965).
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temperatures, Proc. R. Soc. London 293A (1966) 479 - 492.).
First, the surface charge is (Ji Wang, Wenhua Zhao, and Jianke Du: The determination of electrical parameters of quartz crystal
resonators with the consideration of dissipation, Ultrasonics, 44 (S1): 869-873, 2006)

Qs = j D,dA,
A
and the electrical current is
I = _st
As a result, with alternating driving voltage on the faces as ¢,e!®t, we have the impedance
2 eiwt
7= 20
I
which gives the resistance as
R = Re (2).
The dynamic capacitance of a resonator is
Qs
Cm = 2¢0eiwt‘

And the capacitance ratio can be calculated accordingly with the readily available static capacitance.

Finally, the quality factor will be
1 1

Q=0RC. = wRe(D)C,."
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Activity Dip

B Inthe temperature variation process, there will be time intervals that the resonator will stop functioning
without a signal output. This is considered as a major defect of quartz crystal resonators, but the
occurrence of such a phenomenon, frequently referred to as activity dip, has puzzled engineers for long
time and eliminating the activity dip has been a top priority in product development. Detailed analysis of
the temperature change and vibration modes coupling revealed that the activity dip actually is caused by
the vibration mode conversion due to the changes of coupling of multiple vibration modes in finite plates.
Many approximate analyses will not be able to find all the vibration modes in the frequency vicinity,
resulting the difficulty of predicting the accurate occurrence of the activity in terms of temperature. The
challenge is compounded by the modification of the structure and frequency which are also inconsistent
with known nominal properties of resonators.

B The solution to the activity problem is to have accurate analysis of vibration frequency and the effect of
structural modifications in terms of electrodes, mounting, packaging, and thermal variation. The design
parameters should be selected to be least sensitive to temperature change and the mode conversion
should be excluded from the adjacent areas. Obviously, the preliminary step in making activity dip free
design is to have accurate frequency spectra, or the frequency dependence on the structural parameters, in
the product development process.

Yong, Y.-K., Patel, M.S., Tanaka, M.: Effects of thermal stresses on the frequency—temperature behavior of

piezoelectric resonators. J. Therm. Stress, 30, 639-661, 2007. DOI:10.1080/01495730701274252
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Drive Level Dependence

Another phenomenon of resonator malfunctioning is the drive-level
dependence (DLD), which shows the frequency and property variation with
the increase of driving voltage in the circuit. Clearly, this is one of the vital
properties in many critical applications because the service can be fatally
disrupted. Later investigations have been shown that the DLD is closely
related to the nonlinear properties of quartz crystal and the nonlinear
vibrations of plates. The resonator properties are different under the
influence of strong electrical field. Such an analysis and prediction are
presented with the finite element analysis with the consideration of nonlinear
vibrations of piezoelectric plates.

Mihir S Patel, Yook-Kong Yong, and Masako Tanaka, Drive level dependency in
quartz resonators, Intl. J. of Solids Struct., 46 (9), 1856-1871, 2009.
doi:10.1016/].ijsolstr.2008.12.021
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P.C.Y. Lee and J. Wang,
Frequency—temperature
relations of thickness-
shear and flexural
vibrations of contoured
quartz resonators,

J. Appl. Phys. 80 (6),
3457-3465,1996.
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Please send your comments, suggestions,
and technical questions to

vvong@rci.rutgers.edu

wangji@nbu.edu.cn
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