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2. Fundamentals of wave propagation
3. Quartz crystal material

4.Thickness vibrations of infinite plates
5. Mindlin plate equations
6. Complication factors
7.Analytical considerations
8. Finite element method
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Analytical Considerations

. 3-D piezoelectric equations for quartz with
material dissipation

. Butterworth Van Dyke resonator model of
the quartz resonator: the equivalent
electrical parameters

. Q of aresonator

4. Eigenvalue analysis

. Frequency response analysis
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Constitutive Equation: T; = (Cy H Jon;4)) S, + €2

Electrostatic

Constitutive Equation: Di — eiijjk — gik¢,k

Stress equation of Tij T —a)szi InV

motion: : :
Specifyp, =n;T; ory; in S

Charge equationof D,;; =01InV
motion:

Specify q=n,D.or ¢in S
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I
1 Motional

of the quartz resonator, while the resistance
R, is the resonator damping

I
,armof th | —
| resonator
| =
The : v : :l—
resonator at ! : Yo =—1/(0Cy)
rest is the : L
Shl_mt ST : The inductance L, and reciprocal of
capacitor C : : l motional capacitance 1/C, represent
I I : respectively the effective mass and stiffness
. |
' |

Ref: "Resonator and Device Measurements", E. Hafner, Precision
Frequency Control Volume 2, Oscillators and Standards, Edited by E.A.
Gerber and A. Ballato, Academic Press, Inc., 1985, Chapter 7, pp. 4-6.
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evices with a low phase noise an
high frequency stability based on a
high Q factor. The devices are usually
derived from the quartz crystal
resonator.

Rapid miniaturization of the quartz
resonator causes a lowering of the Q.
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Miniaturization trend of resonators
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times for the design and prototyping of
miniaturized resonators

Accurate models for arriving at optimized
designs of miniaturized quartz resonators along
with an estimation of their Q and equivalent
circuit parameters would be very useful.

The miniaturized resonator is more sensitive to
the effects of the packaging. Hence, 3-D
models that include the effects of packaging
are needed.
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N L

Energy loss by mechanical viscosity

Friction loss at the interface between the electrode
film and quartz plate
Electrical resistance along the lead pattern

Mechanical vibration loss through the supporting pads

Friction loss via the ambient gas

O SiEl

Coupling of the main mode with spurious modes
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Eigenvalue analysis of quartz
resonators with material dissipation
and mounting substrate
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chyfreq pi)=1.105753323  Sudace: Taaldploement, ki 1123210

w1010

atn-d

2-D model of a high frequency mesa
plate AT-cut quartz resonator mounted

on a base Mesa plate resonator
: vibrating at fundamental
thickness shear mode

i L

Substrate upon which
the mesa plate
resonator was mounted

e .0z 0 nz e g na 1
- Min: 17381
a

Ju]
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richer, hence there will
be more interactions
with spurious modes

9.78E+08 9.78E+08
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that lead to lower Q
factors

Mesa plate resonator itself

Mesa plate resonator

mounted on the base
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AT-Cut Quartz Resonator

Eigen Frequency = 9.86042e6
Total Displacement Plot

x1e-3

Blank: 4000 microns (X1) x 1500 microns (X3) x 165.47 microns (X2)
Gold Electrodes: 3000 microns (X1) x 1000 microns (X3) x 0.3 microns (X2)

Theory and Analysis of Quartz Crystal Resonators slide # 14 RUtgerS

llllllllllllllllllllllll




High Current
High Energy

High Energy And Cumrert
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Eigenvalue analysis of two 12 MHz AT-cut
resonators
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eigfren_smpris) D} =1 208557 Boundary: Tokl deplacament [m]

Top electrode

Grounded
fr =12.03559 MHz,
Qfactor = 1.49x10°

Bottom electrode
eGrounded

Silicon rubber mounting, isotropic material:
E=2.0e8 +j*2.0e7 Pa

Nu =0.33

Rho = 1050 kg/m”3
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-

A: Blank: X=1627 um, Z=5715 um, Y=132.8 um B: Blank: X=1627 um, Z=2413 um, Y=132.3 um
Electrode: X=1288 um, Z=3048 um, 0.5 um goldElectrode: X=1422 um, Z=635 um, 0.5 um gold
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BVD electrical parameters by eigenvalue analysis

1) Obtain from eigenvalue analysis
a) w,g, real, short circuit resonance frequency, rad/s

b) w, imaginary, short circuit resonance frequency,
rad/s

2
3) C, = - where E, = %J‘pw > dv,
\

20Ey;,
and | is the current over the top electrode
4) R, =1/[wg QC,] motional resistance
5) L, =1/[C, wgz?] motional inductance

6) C,=the total charge over the 1V top electrode in an
electrostatic problem, bottom electrode grounded
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Resonator A Resonator B
BVD Eigenvalue IMeasured Eigenvalue IMeasured
parameters analysis values analysis values

f., MHz 12.03559 12.0 12.25664 12.0
2C,, PF 1.22 1.23 0.31 0.35

C,.fF 541 5.7 1.38 1.8
L,, mH 32.8 Not available 128.3 Not available
R,,ohm 16.6 15 130 < 1000
IMeasured values provided by Statek, Inc.
2From piezo-electrostatic calculation

Theory and Analysis of Quartz Crystal Resonators slide # 20 RUtgerS 20

uuuuuuuuuuuuuuuuuuuuuuuuu



Frequency response analysis of quartz
resonators with material dissipation
and mounting substrate
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With Material Damping

No Damping
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etermination of its equivalent
electrical parameters from the finite
element model admittance curve
(frequency response analysis)
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Conductance G, susceptance B, and admittance Y curves

N
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first. One electrode is grounded, while the
other electrode is applied with 1 V. The

magnitude of the charge over the 1V
electrode is C, .
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motional arm
a) Calculate B, =B —aC,

b) Calculate R; = G
alculate R G?+ B’
c) Calculate X, =- 251 -
G°+B;

d) Calculate —= by the central difference
method: dxl _ [Xl]i+1 B [Xl]i—l
L df i 1:i+1 o 1:i—l

|
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N O

Note the series resonance f,at  Note:

the maximum admittance Y L - 1 dX,
Obtain the value of R, at f = f, Az dt ¢y
Obtain the value of L, at f =1, C, = 12
Obtain the value of C; at f=f, it Loy,
: 1
Obtain the valueof Qatf=f Q=
’ 2721:5C1R1f:f
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freq(30)=1.645e5 Subdomain: sqri{u”2+v~2+w"2) [m] Max: 1.792e-8
Deformation : Displacement -

C,=0.3 pF
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Qfactor, L,, and R,
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FEM admittance curve with
frequency range 140 KHz to 240
KHz, and frequency increments of
200 Hz

C, = 0.29983 pF

R, =127.58 ohm

L, =1357.3H

C, = 0.69957 fF

Q = 10.949x106
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curve  with
frequency range 163.6 KHz to

FEM  admittance

164.4 KHz, and
increments of 5 Hz
C, = 0.29983 pF
R, =126.12 ohm
L, =1350.6 H
C, = 0.69830 fF
Q = 10.949x106

frequency
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Effects of dissipation (7/VIL) at the
mounting supports on the BVD
model parameters
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Qfactor, L1 and R1

C1, Qfactor, L1, R1, and Y versus f
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Comparison of the effects of dissipation
(PML) at the mounting support on the
BVD electrical parameters

No PML at the mounting support

FEM admittance curve  with
frequency range 163.6 KHz to
164.4 KHz, and frequency
increments of 5 Hz

C, = 0.29983 pF

R, =126.12 ohm

L, =1350.6 H

C, = 0.69830 fF

Q =10.949x106
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With PML at the mounting support

FEM admittance curve with
frequency range 163.6 KHz to
164.4 KHz, and frequency
Increments of 5 Hz

C, = 0.29983 pF

R, = 69481 ohm

L, =1350.7H

C, = 0.69825 fF

Q =20017

Rutgers



admittance (A.U.)

Frequency response
after mounting onto a
base in the package

admittance (A.U.)

o
o

Frequency (Hz)
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frequency spectrum of a pleted blank
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resonator

Energy sink

Eatx

The State University of Hew | ersey
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No reflection at the interface
Perfect decay of the wave at bottom layer
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Energy trapping not good, large Good energy trapping, minimal
acoustic energy losses to the acoustic energy losses to the
base base
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Calculated admittance
curve using model with
viscosity loss only

)
£
£
o 1.E-03 -
= Experimental result
©
k=
S
_e
< 1.E-04
Calculated admittance /
curve using model with
viscosity loss and PML
1.E-05
13235000 13245000 13255000

Frequency (Hz)
Rutgers
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Admittance (mho)

1.000
Calculated admittance curve using
the model with viscosity only
Calculated admittance curve
0.100 i i
viscosity and PML
0.010 J
Measured
admittance
curve
0.001
0.9994 0.9996 0.9998 1 1.0002 1.0004

Normalized Frequency
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Comparison of calculation results with experimental results

13M Hz A tcut resonator

sampk FiMHZ) Q factor |R10©hm)
experm ent 13.253 1067 10730
with PML w ith viscosity 13.24] 982 9256
w ithout PML with viscosity 13.247 630000 24
F X conditon at support 132171 1000000 85
A8MHz AT cut resonator

sample FiMH2) Q factor |[R10hm)
experm ent 47997 69110 941
with PML with viscosity 48.165 199423 4.40
with PML viscosity, lead resistand 48.165 175492 5.00
w ithout PML w ith viscosity | 48.166 427159 2.03

Q factor can be estimated by consideration
of both viscosity loss and supporting loss.
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Frequency Dependence of Q factor

1.00E+07
1.00E+06
. Warner's equation[3]
S 1.00E+05 -
o --@
£ e
G 1.00E+04 Experimental result \ ~~~~~~~
v ~ .
1.00E+03 )
1.00E+02 | |
10000000 100000000 1E+09
Frequency

@ Q factors with viscosity loss
o Q factor with viscosity + PML

[3] A. W. Warner, "Design and Performance of Ultraprecise 2.5-mc Quartz Crystal Units," The Bell
System Technical Journal, pp. 1193-1217, September 1960
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solutions for a 3-D resonator with finite
dimensions

Numerical methods are needed for designs
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Finite Element Method

Validation of the finite element method:

a) The AT-cut fundamental thickness shear
mode

b)

C)

Freo

uency spectrum and comparison with

Koga’s experimental data
-requency-temperature characteristics and

comparison with Sekimoto, et. al.’s
experimental data
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e Mode shape

* High current at the plate surfaces
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Finite element model of a 1 MHz AT-
cut quartz plate

e Cut angle 35.25 degrees about the digonal
axis

 Dimensions: 16 mm X-length, 27 mm Z-length,
1.65 mm thickness

e Lagrange quadratic hexahedral elements used

e 3x 35 x50-element mesh

e 30 eigenfrequencies calculated centered
about 1 MHz
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eigfreq_smpz3d(16)=1.004649e6 Boundary ; x-displacement [m]
Deformation: Displacement

=
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Max . 1.027e-8

-1
Min;: -1.027e-8
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1.2E-03 —

1.0E-03 +—

Comparison of the

current at a plate
surface of the thickness

mode (mode 16) to that
~ of other modes in the

vicinity

6.0E-04

4.0E-04

2.0E-04

0.0E+00 -
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Frequency spectrum and comparison
with Koga’s experimental data[1]

 Frequency spectrum = plot of resonant
frequencies versus a parameter such as the
ength to thickness ratio (a/b)

[1] "Radio-Frequency Vibrations of Rectangular
AT-cut Quartz Plates”, Isaac Koga, Journal of
Applied Physics, Vol. 34, No. 8, August 1963,
pp 2357-2365
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Koga's measured frequency spectium of strong resonances in a 35.25 deg.
AT-cut quartz plate, 2a=16 to 24 mm, thickness 2b=1.65 mm, 2c=27.004 mm

1.05 B
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I‘I‘,::’% "',.hhh
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L. Ll L -

Koga expenmental datal
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5 12 125
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13
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Theory and Analysis of Quartz Crystal Resonators slide # 54

from 16 mm to 24 mm

By meticulously “shaving” the
X-length from 24 mm down to
16 mm, and carefully
measuring and recording the
strong resonances after each
“shave”, he produced the
frequency spectrum on the
left.

He used a pair of air-gap
electrodes to drive the plate.
It is more meaningful to plot
resonance frequencies
against the dimensionless
length a/b ratio.

The red rectangle on the
graph delineates the range of
values to be compared with
COMSOL model results.

Rutgers
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Sorting the COMSOL model results

 The modal frequencies were calculated along with
their relative ratio of shear (xy) strain energy to total
strain energy and current.

e The modes were sorted into three groups:

1. High ratio of shear (xy) strain energy to total strain
energy and current modes

2. High current modes (this represent the strong
resonant modes measured by Koga [1]

3. Other modes
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Frequency spectrum: Comsol Piezo3D results versus Koga's measured data
35.25 deg. AT-cut quartz plate, thickness 2b= 1.65 mm, 2¢ =27.004 mm

3:535x50 -element mesh, High current & %12 shear energy
3¥535%50 -element mesh, High current
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Frequency spectrum: Comsol Piezo3D results versus Koga's measured data
35.25 deg. AT-cut quartz plate, thickness 2b= 1.65 mm, 2¢ =27.004 mm
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ere are charge cancellations in most o
the modes hence they could not be driven by
a pair of electrodes on the plate major
surfaces.

The red modal branch represents modes
which are strong in current and ratio of shear
(xy) strain energy to total energy, and it is
usually the thickness shear modal branch.
The green modal branch represents the
modes which are strong in current, and it is
usually the strong resonances measured by
Koga.

The blue modal branch represents the other
modes which are usually not detected by
Koga. These modes are usually not driven in
a quartz plate resonator, however they are
the spurious modes that could cause
problems due to unsymmetrical electrodes&
plate, mounting supports, nonlinear behavior,
etc.
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Frequency-temperature characteristics
and comparison with Sekimoto, et.
al.”s experimental data[2]

* Frequency deviations versus temperature

[2] H. Sekimoto, S. Goka, A. Ishizaki, and Y.
Watanabe, "Frequency-temperature behavior
of spurious vibrations of rectangular AT-quartz

olates," Proceedings of the 1997 IEEE

nternational Frequency Control Symposium,
op. 710-714, 1997
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Finite element model of 2 0.96 MHz

AT-cut quartz plate
Cut angle 35.25 degrees about the digonal
axis
Dimensions: 13.964 mm X-length, 7.000 mm
Z-length, 1.737 mm thickness
Lagrange quadratic tetrahedral elements used

Mesh generated using free meshing of
maximum element size 0.8 mm.

20 eigenfrequencies calculated about the 0.96
MHz
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sigheq_smpz3d(10)=9.558004e5  Boundary: Tatal displacement [m] Max: 5.775-9

a0

Min: 1,606e-10
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Sorting of modes according to frequency, x-y
shear energy and current

In experiments, only the strong resonances
could be measured readily. These are modes
that yield relatively large currents.

We sort the modes according to the charge on
the top surface of the plate. Strong
resonances have relatively large charges.

We sort the modes according to the x-y shear
energy. The thickness shear mode has both
large charge and large x-y shear energy.
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Comparison of f-T model with
Sekimoto's data for Mode A
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Frequency change, ppm, from 25C
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Comparison of f-T model with Sekimoto's
data for the thickness shear mode
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Sekimoto's data for Mode B
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¢ Static f-T model

B Sekimoto measured data
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Please send your comments, suggestions,
and technical questions to

vvong@rci.rutgers.edu

wangji@nbu.edu.cn
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