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Introduction 
Notations in the time domain 

V (t) = V0 sin [2πν0t + ϕ] 

where ϕ(t) is the phase “noise” 

Time error x(t): 

V (t) = V0 sin [2πν0 (t + x(t))] 

ϕ(t)
with x(t) = [s]

2πν0 

“My watch is 39 seconds late”: 

twatch = 10 h 10 min 37 s 
tref = 10 h 11 min 16 s 

⇒ x(t) = −39 s 
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Frequency noise 

V (t) = V0sin [2πν0t + ϕ(t)] 

Instantaneous frequency ν(t):
 

V (t) = V0 sin [2πν(t)]
 

1 d [2πν0t + ϕ(t)] 1 dϕ(t)
with ν(t) = = ν0 + [Hz]

2π dt 2π dt 

Frequency noise Δν(t): 

1 dϕ(t)
Δν(t) = [Hz]

2π dt 

Frequency deviation y(t): 

Δν(t) 1 dϕ(t)
y(t) = = [dimensionless]

ν0 2πν0 dt 
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Frequency noise vs Phase noise 

Phase and frequency noise: 2 representations of 1 phenomenon ⎫ 
ϕ(t)

x(t) = 
2πν0 dx(t)⇒ y(t) = 

dt1 dϕ(t)
y(t) = 

2πν0 dt 

A fundamental difference: 

ϕ(t) and x(t) are instantaneous 
Δν(t) and y(t) have to be averaged 

� tk +τ1 x(tk + τ) − x(tk )ȳk = y(t)dt = 
τ τtk 

⎪⎪⎪⎬ ⎪⎪⎪⎭ 
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Notations in the frequency domain 

Power Spectral Densities (PSD) 

Fourier Transform (finite energy): 

+∞ 

Φ(f ) = ϕ(t)e−j2πft dt [s] 
−∞ 

Energy Spectral Density (finite energy): 

|Φ(f )|2 = 
2+∞ 

ϕ(t)e−j2πft dt [s2] 
−∞ 

Power Spectral Density (finite power): ⎡ 
1 

⎤
2

Sϕ(f ) = lim 
T →∞ 

⎣
T 

ϕ(t)e−j2πft dt ⎦ [s] ≡ [Hz−1] 
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Relationships between PSD 

Time error PSD: Sx (f ) 

ϕ(t) 1 
x(t) = ⇒ Sx (f ) = Sϕ(f )2πν0 4π2ν0

2 

Dimension: [s3] ≡ [Hz−3] 

Frequency deviation PSD: Sy (f ) 

1 dϕ(t) f 2 
y(t) = ⇒ Sy (f ) = Sϕ(f )2πν0 dt ν0

2 

dx(t)
y(t) = ⇒ Sy (f ) = 4π2f 2Sx (f )dt 

Dimension: [s] ≡ [Hz−1] 
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The power law noise model 

Noise model 

+2+ 
Sy (f ) = hαf α α integer 

α=−2 

Sy (f ) Sϕ(f ) Noise type Origin 
h−2f −2 b−4f −4 Random Walk Freq. Mod. Environment 
h−1f −1 b−3f −3 Flicker F.M. Resonator 

h0 b−2f −2 White F.M. Thermal noise 
h1f b−1f −1 Flicker Phase Mod. Electronic noise 
h2f 2 b0 White P.M. External white noise 
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A statistical estimator 
as well as a spectral analysis tool 

Definition of the true variance: n v 
2I2(τ ) = (ȳk − \ȳk ))

Estimation of the true variance: ⎛ ⎞2 
N N+ + ⎝¯ ¯⎠σ2(N, τ) = 

1 
yi − 

1 
yjN − 1 N 

i=1 j=1 

The Allan variance (2-sample variance): ⎛ ⎞ ��2 
2 2 stands for: � � + 1 + 

σ2(τ ) = σ2(2, τ ) = ⎝ȳi − ȳj ⎠ ensemble average y 2 
i=1 j=1 time average n v 

2 ≡ convolution. . . σ2(τ ) 
1 

(¯2 − ¯1) = AVAR(τ )yyy = 
2 
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ȳj ⎠ ensemble average y 2 
i=1 j=1 time average 

2 
n v ≡ convolution. . . σ2(τ ) 

1 
(¯2 − ¯1) = AVAR(τ )yyy = 

2 

F. Vernotte Variance measurements 12 



� � � � ��

Introduction 
Practical use of the Allan variance 

Statistics of the Allan variance and the Allan deviation 
Prediction of very long term time stability 

A statistical estimator as well as a spectral analysis tool 
Practical calculation of the Allan variance 
Allan variance versus Allan deviation 

A statistical estimator 
as well as a spectral analysis tool 

Definition of the true variance: n v 
2I2(τ ) = (ȳk − \ȳk ))
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1 
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A spectral analysis tool 
as well as a statistical estimator 

Convolution in the time domain. . . 

⎪⎪⎪

  2+∞ 

σ2(τ) = y(t)hy (tk − t)dty 
−∞ 

with 

⎧ ⎪⎪⎪⎨ 

⎩ 

−1
hy (t) = √ if −τ ≥ t < 0 

2τ 
+1

hy (t) = if 0 ≥ t < τ√ 
2τ 

hy (t) = 0 else 

. . . filtering in the frequency domain 
∞ 

σy 
2(τ) = Sy (f ) |Hy (f )|2 df 

0 

2 2 sin4(πτ f )
with |Hy (f )| = |FT [hy (t)]| = 2

(πτ f )2 
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Convergence for drift 

Convergence criterion: the moment condition 

σ2(τ) is a first-order difference (derivative): y 

not sensitive to constant (lin. ph. drift) 
sensitive to linear frequency drift 

Convergence for power-law noise 
∞ 

σ2(τ) = hαf α |Hy (f )|2 dfy 
0 

converges for f −2, f −1 and white FM 
does not converge for f 1 and f 2 FM 

The moment condition 
+∞ +∞ 

|Hy (f )|2 f αdf converges ⇔ hy (t)tqdt = 0 for 0 ≤ q ≤ 
2−∞ −∞ 

−α − 1 
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Link between noise levels and variance responses 

+∞ sin4(πτ f )
σ2(τ) = 2 hαf α dfy (πτ f )2

0 

fh is the high cut-off frequency 

Sy (f ) h−2f −2 h−1f −1 h0f 0 h+1f +1 h+2f +2 

σ2 
y (τ ) 

2π2h−2τ 
3 

2 ln(2)h−1 
h0 

2τ 
[1.04 + 3 ln(2πfhτ)] h+1 

4π2τ2 
3h+2fh 

4π2τ2 

F. Vernotte Variance measurements 15 



�

�

Introduction 
Practical use of the Allan variance 

Statistics of the Allan variance and the Allan deviation 
Prediction of very long term time stability 

A statistical estimator as well as a spectral analysis tool 
Practical calculation of the Allan variance 
Allan variance versus Allan deviation 

Practical calculation of the Allan variance 
Calculation from time error samples 

n v n v 
σ2 1 2 2 

Calculation from frequency deviation 
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(πτkf1)2 

k=1 
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Allan variance with overlapping 

t 

ȳk 
τ = 3τ0

  τ0

τ0-steps moving average 

Benefits and drawbacks : 
lower dispersion 
more correlated estimates 

Allan variance without overlapping 

t 

ȳk 
τ = 3τ0

 τ0 

Shifted by τ -steps : 
τ = 3τ0 ⇔ Ȳ1 = (ȳ1+ȳ2+ȳ3)/3 

Benefits and drawbacks : 
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Benefits and drawbacks : 
less correlated estimates 
higher dispersion 

F. Vernotte Variance measurements 18 



 

 

  
t 
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ȳk 
τ = 3τ0 

τ0 

Introduction 
Practical use of the Allan variance 

Statistics of the Allan variance and the Allan deviation 
Prediction of very long term time stability 

A statistical estimator as well as a spectral analysis tool 
Practical calculation of the Allan variance 
Allan variance versus Allan deviation 

Allan variance with or without overlapping 

Allan variance with overlapping 

τ0-steps moving average 

Benefits and drawbacks : 
lower dispersion 
more correlated estimates 

Allan variance without overlapping 

Shifted by τ -steps : 
τ = 3τ0 ⇔ Ȳ1 = (ȳ1+ȳ2+ȳ3)/3 
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ȳk 
τ = 3τ0 

τ0 

Introduction 
Practical use of the Allan variance 

Statistics of the Allan variance and the Allan deviation 
Prediction of very long term time stability 

A statistical estimator as well as a spectral analysis tool 
Practical calculation of the Allan variance 
Allan variance versus Allan deviation 

Allan variance with or without overlapping 

Allan variance with overlapping 

τ0-steps moving average 

Benefits and drawbacks : 
lower dispersion 
more correlated estimates 

Allan variance without overlapping 

Shifted by τ -steps : 
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ȳk 
τ = 3τ0 

τ0 

Introduction 
Practical use of the Allan variance 

Statistics of the Allan variance and the Allan deviation 
Prediction of very long term time stability 

A statistical estimator as well as a spectral analysis tool 
Practical calculation of the Allan variance 
Allan variance versus Allan deviation 

Allan variance with or without overlapping 

Allan variance with overlapping 

τ0-steps moving average 

Benefits and drawbacks : 
lower dispersion 
more correlated estimates 

Allan variance without overlapping 

Shifted by τ -steps : 
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Benefits and drawbacks : 
less correlated estimates 
higher dispersion 

F. Vernotte Variance measurements 18 



 

 

  
t 
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Allan variance versus Allan deviation 

ADEV(τ ) = σy (τ) = σy 
2(τ) 

Physical meaning 

Δt 
σy (τ ) ≡ 

τ 
Ex.: Cs clock σy (τ = 1day) = 10−14 

⇒ Δt ≈ 10−14 · 105 = 10−9 = 1 ns over 1 day 
Δf 

σy (τ ) ≡ (during τ )
ν0 

Ex.: H-Maser @ 100 MHz σy (τ = 1hour) = 10−14 

⇒ Δf ≈ 10−14 · 108 = 10−6 = 1µHz over 1 hour 

Benefits and drawbacks 

Easy to interpret 
Biased 
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Chi-squared and Rayleigh distribution vn1 2Allan variance: σy 
2(τ ) = (ȳ2 − ȳ1)2 

N

(τ) = (ȳ2 − ȳ1)
+1 2Estimate: σ̂y 

2 
2N 

i=1 

ȳ2 − ȳ1: Gaussian centered values 
2(ȳ2 − ȳ1) : χ2

1 distribution 
N

2(ȳ2 − ȳ1) : χN 
2 distribution 

+1 
2N 

i=1 v1 2Allan deviation: σy (τ) = 

1 
    

y2 − ȳ1)2 
N+

2 

n 
¯(

(ȳ2 − ȳ1) ⇒ χN distributed (Rayleigh) Estimate: σ̂y (τ) = 2N 
i=1 

N is the number of Equivalent Degrees of Freedom (EDF) 
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2(ȳ2 − ȳ1) : χ2

1 distribution 
N
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+1 2Estimate: σ̂y 

2 
2N 

i=1 
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N+1 2 

n 
¯(
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Reminder of the Equivalent Degrees of Freedom 

Meaning of the EDF 

Mean(χ2 
ν Variance(χ2 

νand ) = 2ν) = ν 
The EDF ν contains the information about the dispersion of the 
random variable χ2 

ν 

Estimation of the EDF 
N1 + 

2ˆ (τ) = (ȳ2 − ȳ1) ⇒ N if {ȳ1, ȳ2, . . .} uncorrelated!σy 
2 χ2 

2N 
i=1 

False: 
for low frequency noises (flicker and random walk FM) 
with overlapping variances 

Algorithm for estimating the EDF: 
C. Greenhall and W. Riley, 2003, “Uncertainty of Stability
 
Variances Based on Finite Differences” (35th PTTI).
 
Used in Stable 32 as well as in SigmaTheta.
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World of the model versus world of measures 

θ is the model parameter 
ξ is a measure of the parameter 

Example:  
Parameter σy (τ = 10 s) = h0/20 where h0 is the white FM level 

Measure σ̂y (τ ) is a measure of σy (τ = 10 s) 

World of the model (direct problem): 

Knowing the parameter θ0, how is the measure ξ distributed? 
Only valid for simulations! 

World of the measures (inverse problem): 

Knowing the measure ξ0, how to estimate a confidence interval over θ? 
It’s the right question of the metrologist! 
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Model parameter and measure for a χ2 distribution 

Let us fix the measure to ξ0 = 1 ± 5 %. . . 
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Model parameter values for a measure ξ0 ≈ 1 
Theoretical results versus 20,000 simulations 

The errorbars should be shorter downward than upward! 
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Study of a χ distribution with 2 degrees of freedom 
Direct problem 

−χ2/2Probability density function: p(χ) = χe
∞ 

The pdf is normalized: p(χ)dχ = 1 
0 

∞ π
Mathematical expectation: µ = χ · p(χ)dχ = 

20 
χ 

−χ2/2Cumulative distribution function: P(χ) = p(y)dy = 1 − e
0 

Inverse cdf: P−1(α) = −2 ln(1 − α) 
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−χ2/2Probability density function: p(χ) = χe
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The pdf is normalized: p(χ)dχ = 1 
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∞ π
Mathematical expectation: µ = χ · p(χ)dχ = 

20 
χ 

−χ2/2Cumulative distribution function: P(χ) = p(y)dy = 1 − e
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Inverse cdf: P−1(α) = −2 ln(1 − α) 
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Confidence Interval of a χ2 random variable 

{. . . χi . . .} is a set of realizations of the random variable χ 

P−1(0.025) ≈ 0.22502 
⇒ χi < 0.22502 with 2.5% confidence
 

P−1(0.975) ≈ 2.7162
 
⇒ χi < 2.7162 with 97.5% confidence 

Confidence Interval: 
E(χ) ≈ 1.2533
 
0.22502 < χi < 2.7162 with 95% confidence
 

General case of a random variable x = k · χ 
E(x) < x >

Estimation of the scale factor: k = ≈
E(χ) µ 

⇒ 0.22502 · k < xi < 2.7162 · k with 95% confidence 
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Conditionnal probabilities 
Reduced variable (I) 

Let us consider the standard χ2
2 variable: χ2 = X1

2 + X 2 
2 2 

where X1 and X2 are 2 Gaussian centered standard random 
variables   

⇒ E(χ2
2) = 2 ⇒ E

1 
χ2 = 1.22

We assume that σ̂2(τ ) = ξ2 is χ2
2 distributed and is an unbiased y 

estimator of the parameter σ2(τ) = θ2:y   
ξ2 

E = 1. 
θ2

We can then define the reduced variable χ2
2 as: 

ξ 
χ2

2 = 2 . 
θ 
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Reduced variable (II) 

By extension, we assume that σ̂y (τ) = ξ is χ2 distributed 
and ξ is an estimator of the parameter σy (τ ) = θ. 
We can then define the reduced variable χ as: 

√ ξ 
χ = 2

θ 
. 

The differential dχ is then: 

∂χ ∂χ 
dχ = dξ + dθ. 

∂ξ ∂θ 

From p(χ) we can deduce P(ξ|θ0) and P(θ|ξ0) 
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Parameter estimation from a single measure 
Usual frequentist reasonning 

We assume that the measure ξ represents the estimate σ̂y (τ ) and the 
parameter θ stands for the real unknown value σy (τ). 

√ 
Reduced variable: χ = 2ξ/θ 

Low bound: B2.5% ≈ 0.22502 
High bound: B97.5% ≈ 2.7162 √ 
95 % confidence interval: 0.22502 < 2ξ/θ < 2.7162 

√ √ 
2ξ0 2ξ0Frequentist reversal: < θ < @ 95 % 

2.7162 0.22502 

⇒ 0.52066 · ξ0 < θ < 6.2847 · ξ0 with 95 % confidence. 

We obtain directly the same result from P(θ|ξ0) (as well as from the 
Bayesian method with a total lack of knowledge prior). 
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Generalization to a χν distribution 

√ ξ
Reduced variable: χ = ν 

θ 

21−ν/2χν−1e−χ2/2 
pdf: p(χ) = 

Γ(ν/2)   
ν+1√ Γ 2Mathematical expectation: µν = 2 

Γ( ν 
2 ) 

ν χ2 
cdf: P(χ) = Γ ,

2 2 
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Parameter estimation 
Allan variance 

We assume that σ̂2(τ ) = ξ2 is χ2
2 distributed and is an estimator y 

of the parameter σ2(τ) = θ2.y 

ξ2 
Reduced variable: χ2 = 22 θ2 

Mathematical expectation: χ2 = 22    
ξ2 ξ2 

⇒ 2 = 2 ⇔ = 1 
θ2 θ2

For a given parameter θ0
2: ξ2 = θ0

2 

The average of the measures given by the parameter θ0
2 is equal 

to θ0
2: ξ2 is an unbiased estimator of θ0

2. 
For a given measure ξ0

2: θ2 = ξ2 
0 

The average of the parameter values which give the measure ξ2 
0 

is equal to ξ0
2: the measure ξ0

2 may be used for representing 
the parameter θ2 (for fitting. . . ) 
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The average of the parameter values which give the measure ξ2 
0 

is equal to ξ0
2: the measure ξ0

2 may be used for representing 
the parameter θ2 (for fitting. . . except in a log-log plot!) 
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Parameter estimation 
Allan deviation 

We assume that σ̂y (τ) = ξ is χ2 distributed and is an estimator of 
the parameter σy (τ ) = θ. 

√ ξ
Reduced variable: χ2

2 = 2
θ 

Mathematical expectation: χ2 = µ = π/22 
√ ξ π ξ π ⇒ 2 = ⇔ = 

θ 2 θ 4 

For a given parameter θ0: \ξ) = π/4θ0 ≈ 1.128θ0 
ξ is a biased estimator of θ0 (overestimated by 13%). 
For a given measure ξ0: \θ) = 4/πξ0 ≈ 0.886θ0 
the measure ξ0 should NOT be used for representing the 
parameter θ (underestimated by 13 %). 

Never fit the curve of Allan deviation, always use the Allan variance! 
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Increasing the number of edf: the Total variance 

In order to improve estimates for very long term, D. Howe developed: 

The longer the time du­
ration, the larger the 
uncertainty. 

What about very long 
term stability ? 

Total variance: UFFC-47(5), 1102-1110 (2000) 

Theo: Metrologia 43, S322-S331 (2006) 
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Fitting curve over variance measurement (I) 

4+ 
σ2(τ) = Ci Φi (τ) with Φi (τ) = τ i−2 

y
 
i=0
 

How to estimate the Ci coefficients? 

Classical least squares:   2N 4+ + 
σ̂y 

2(τj ) − Ci Φi (τj ) is minimum 
j=1 i=0 

not suitable for high dynamic 
not suitable for positive or null values 
not suitable for variance curves 
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Fitting curve over variance measurement (II)
 

4+ 
σ2(τ) = Ci Φi (τ) with Φi (τ) = τ i−2 

y
 
i=0
 

How to estimate the Ci coefficients? 

Relative least squares:    2N 4+ +1 
σ̂y 

2(τj ) − Ci Φi (τj ) is minimum 
σ̂y 

2(τj )j=1 i=0 

equivalent to a least square fit on log-log plot 
doesn’t take into account the uncertainties over the Allan 
variance measures 
not suitable for variance curves 
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Fitting curve over variance measurement (III) 

4+ 
σ2(τ) = Ci Φi (τ) with Φi (τ) = τ i−2 

y
 
i=0
 

How to estimate the Ci coefficients? 

Weighted relative least squares: 
2N 4+ +  1  1 

σ̂2(τj ) − Ci Φi (τj ) is minimum yEDF σ̂2(τj ) σ̂y 
2(τj )yj=1 i=0 

equivalent to a least square fit on log-log plot 
takes into account the uncertainties over the Allan variance 
measures 
suitable for variance curves 
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Estimation of the noise levels from the fitting curve 

4+ 
σ2(τ ) = Ci Φi (τ) with Φi (τ) = τ i−2 

y
 
i=0
 

4π2C0C0τ
−2 White or Flicker PM: h+2 = or h+1 ≈ 4π2C03fh 

C1τ
−1 White FM: h0 = 2C1
 

C2
C2τ
0 Flicker FM: h−1 = 

2 ln(2) 
3C3C3τ Random Walk FM: h−2 = 
2π2 

C4τ
2 Linear frequency drift: D1 = 2C4 

Uncertainties Δhα ? See Vernotte et al., IM-42(2), 342-350 (1993) 
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Extrapolation to very long term time stability 
Some recommendations 

Is it possible to extrapolate the fit beyond the 
last Allan variance measure? 

Sometimes yes, but very carefully ! 

We ought already to answer to the following 
qu

1 

2 

3 

estions. . . 

Is the longest term noise or drift asymptote visible on the curve? 
Flicker FM for Cesium, random walk FM and/or linear frequency drift otherwise 
Is this asymptote well determined ? 
This asymptote must be dominant for at least 2-3 octaves 
Is the curve compatible with a null coefficient for the longest term 
noise or drift ? 
The bottom uncertainty domains can fit correctly the other asymptotes 

If you answered YES to the questions 1 and 2, and NO to the last 
question, you may try. . . 
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