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Introduction

Introduction

Notations in the time domain

Ideal oscillator
V(t) Real oscillator

V(t) = Vo sin 2ot + o(1)]

where (1) is the phase “noise”

@ Time error x(1):

V(t) = Vo sin[2mvp (E+ x(1))]

with  x(t) = ;fz [s]
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Introduction

Notations in the time domain

Ideal oscillat
Real osaillator = Vosin 2t + o(1)]

where @( ) is the phase “noise”
h | ¢ @ Time error x(1):

V(t) = Vosin[2mp (t + X(1))]

with  x(t) = ;fz [s]

“My watch is 39 seconds late”: J

@ tyateh =10 10 Min 37 s
@ ey =10h11min16s
° = x(t)=-39s
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Introduction

Frequency noise

V(t) = Vosin[2ruvot + o(1)]

@ Instantaneous frequency v(t):
V(t) = Vosin[27v(t)]

. A dRmeotet)] 1 de(t)
with v(t) = o af Vo + or  dt [Hz]
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Introduction

Frequency noise

V(t) = Vosin[2ruvot + o(1)]

@ Instantaneous frequency v(t):
V(t) = Vosin[27v(t)]

1 dlemwtre®] 1 det)

S V(t):27r dt O or T at

@ Frequency noise Ay (t):

Cial) [Hz]

1
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Introduction

he frequency domain

Notations in the time domain
[\
N\

Frequency noise

V(t) = Vosin[2ruvot + o(1)]

@ Instantaneous frequency v(t):
V(t) = Vosin[27v(t)]

1 dlemwtre®] 1 det)

S V(t):27r dt O or T at

@ Frequency noise Ay (t):

_ 1 dy(t)

T 27 at [Hz]
@ Frequency deviation y(t):

_Av(t) 1 de(t)
Ty 27y dt

Av(t)

y(1)

[dimensionless]
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Introduction

Notations in the time domain
s in the frequency domain

Phase and frequency noise: 2 representations of 1 phenomenon J

_ (D)
X(t) - 271y _ y(t) _ dX(t)
1 d(t) ot

y(t) = 2myg  dt
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Introduction Notations in the time domain

Notations in the frequency domain
Noise model

Frequency noise vs Phase noise

Phase and frequency noise: 2 representations of 1 phenomenon J

x(f) = o(t)
2 dx(t)
(1) = 1 dy(t)
= 2wyg  dt
A fundamental difference: J
@ ¢(t) and x(t) are instantaneous ’ Yy sampot ——

@ Ay(t) and y(t) have to be averaged

B 1 47 t
Yk =— y(t)dt Q
T t

F. Vernotte Variance measurements 6

~L]




Introduction Notations in the time domain

Notations in the frequency domain
Noise model

Frequency noise vs Phase noise

Phase and frequency noise: 2 representations of 1 phenomenon J

x(f) = o(t)
2 dx(t)
(1) = 1 dy(t)
= 2wyg  dt
A fundamental difference: J
@ ¢(t) and x(t) are instantaneous ’ Yy sampot ——

@ Ay(t) and y(t) have to be averaged

_ 1 kT x(t + 1) — x(t !
V=~ y(tydt = Xt = X() W |
T t T
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Introduction Notations in the time domain

Notations in the frequency domain
Noise model

Notations in the frequency domain

Power Spectral Densities (PSD) J

@ Fourier Transform (finite energy):
+o0o )
o(f)= (et [s]

— 00
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Notations in the frequency domain
Noise model

Notations in the frequency domain

Power Spectral Densities (PSD) J

@ Fourier Transform (finite energy):

(f) = +Oogo(l‘)e_j2”ﬂdt [s]

@ Energy Spectral Density (finite energy):
+o0 ) 2
o(f)* = p(t)e 2 at [s%]

— 00
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Introduction Notations in the time domain

Notations in the frequency domain
Noise model

Notations in the frequency domain

Power Spectral Densities (PSD) J

@ Fourier Transform (finite energy):

(f) = +Oogo(t)e_j2”ﬁdt [s]

@ Energy Spectral Density (finite energy):
+o0 ) 2
o(f)* = p(t)e 2 at [s%]

@ Power Spectral Density (finite power):
2

Sy(f) = p(t)e 2 at [s] = [Hz]

1
-
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Notations in the frequency domain

Power Spectral Densities (PSD) J

@ Fourier Transform (finite energy):

(f) = +Oogo(t)e_j2”ﬁdt [s]

@ Energy Spectral Density (finite energy):

+o0 . 2
o(f)* = p(t)e 2 at [s%]

@ Power Spectral Density (finite power):
+T/2 2

S,(f)= lm | = o(t)e 2t gt [s] = [Hz "]
Tooo | T -T/2
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Introduction Notations in the time domain

Notations in the frequency domain
Noise model

Relationships between PSD

Time error PSD: Si(f) J
0 _ 1
° x(t) = T = S«(f) = R S, (f)

@ Dimension: [s%] = [Hz 2]
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Introduction Notations in the time domain

Notations in the frequency domain
Noise model

Relationships between PSD

Time error PSD: Si(f) )
0 _ 1
° x(t) = T = S«(f) = R S, (f)

@ Dimension: [s%] = [Hz 2]

Frequency deviation PSD: S, (f) ]
1 do(t) _f?
° y(t)= oo dt = S,(f) = Vfgs@(f)
o y(t) = d);gt) N S, (f) = 4722 S,(f)

@ Dimension: [s] = [Hz ]
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Introduction Notations in the time domain

Notations in the frequency domain
Noise model

Noise model

The power law noise model J

+2
Sy(f) = Z ho « integer

a=—2
[ Sy(f) | Sy(f) | Noise type \ Origin |
h_of=2 | b_4f~* | Random Walk Freq. Mod. Environment
h_1f T | b_gf3 Flicker FM. Resonator
ho b_of2 White FM. Thermal noise
hf b_{f T Flicker Phase Mod. Electronic noise
hof? b White P.M. External white noise
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Introduction

Noise model

White FM vs Random Walk FM

White FM

Time [s]

F. Vernotte

Variance measurements
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Outline

e Practical use of the Allan variance
@ A statistical estimator as well as a spectral analysis tool
@ Practical calculation of the Allan variance
@ Allan variance versus Allan deviation
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Practical use of the Allan variance

A statistical estimator

as well as a spectral analysis tool

@ Definition of the true variance: y

P(r) = (7 — (7))

Y samp)(és)

@ Estimation of the true variance:

[
(NT _12 y’ Nzyl f E
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. . tor as well as a spectral analysis tool
Practical use of the Allan variance P oo Y
ce

A statistical estimator

as well as a spectral analysis tool

@ Definition of the true variance: y

P(r) = (7 — (7))

Y samp)(és)

@ Estimation of the true variance:
[
(N T -1 Z y’ Nzyl f E

@ The Allan variance (2-sample variance):
2

o1&
A= @r) = Y (h-52 7
j=1

i=1

2
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A statistical estimator as well as a speclral analysis tool

Practical use of the Allan variance
ation of

A statistical estimator

as well as a spectral analysis tool

@ Definition of the true variance: y

P(r) = (7 — (7))

Y samp)(és)

@ Estimation of the true variance:

[
(NT 12 y’ Nzyl f E

@ The Allan variance (2-sample variance):

A= @) = Y (533

o3(r) = 2 (72 — 1) )= AVAR(?)
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Practical use of the Allan variance

A statistical estimator

as well as a spectral analysis tool

@ Definition of the true variance: y

P(r) = (7 — (7))

Y samp)(és)

@ Estimation of the true variance:
N T
N7 = Z Py f E

@ The Allan variance (2-sample variance):
2 stands for:

o2(r)= o?(2,7) = Z Vi — > Yi @ ensemble average
@ time average

o3(r) = 2 (72 — 1) )= AVAR(?)
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Practical use of the Allan variance

A statistical estimator

as well as a spectral analysis tool

@ Definition of the true variance: y

P(r) = (7 — (7))

Y samp)(és)

@ Estimation of the true variance:
N T
N7 = Z Py f E

@ The Allan variance (2-sample variance):

2 12 stands for:
ojr)= *@7) = Z Yi— 22 Yi @ ensemble average
= = e time average
1, B .
ol(r) = 5 <(y2 — y1)2>: AVAR(7) @ = convolution. ..
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Practical use of the Allan variance

A spectral analysis tool

as well as a statistical estimator

Convolution in the time domain. . . )
- thy®
oo 2 1N2 T
og(r) = y(Ohy(t — t)dt
oo - t
-1 - ¢
hy(t)=— if —-7>t<0
ith +21T 182
wit . A
h,(t) = — if 0O>t<rt
Y( ) \/ET =

hy(t)=0 else
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mator as well as a spectral analysis tool
{ riance
a n

Practical use of the Allan variance

A spectral analysis tool

as well as a statistical estimator

Convolution in the time domain. .. )
LY
=50 2 N2
oy(r) = y(O)hy(t — t)dt
oo _ ¢
h(f) = —-  if t<0 T “
=— i —-T>t<
i ’ \@17 - 12
-1N2 1
With S n =1 it oxt<rs
27
hy(t) =0 else IHy (I
1
.. .filtering in the frequency domain )

oo

)= SR of

sin*(n7f)
(WTf)Z 0 T o 3

with |Hy ()[* = [FT [, (1)]|* = 2
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Practical use of the Allan variance

Convergence for drift )

0'}2,(7') is a first-order difference (derivative):
@ not sensitive to constant (lin. ph. drift) IH, (0]
@ sensitive to linear frequency drift
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A statistical estimator as well as a spectral analysis tool
Practical e variance
Allan vari a

Practical use of the Allan variance

Convergence criterion: the moment condition

Convergence for drift )

0'}2,(7') is a first-order difference (derivative):
@ not sensitive to constant (lin. ph. drift) IH, (02
@ sensitive to linear frequency drift

Convergence for power-law noise )

oo

o2(r) = hof|H,(f)]? df IH,()12
0

@ converges for f~2, f~' and white FM y
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Practical use of the Allan variance ~ N h
Practical e variance

Allan vari

Convergence criterion: the moment condition

Convergence for drift )

0'}2,(7') is a first-order difference (derivative):
@ not sensitive to constant (lin. ph. drift)
@ sensitive to linear frequency drift

Convergence for power-law noise )

oo

o2(r) = hof|H,(f)]? df IH,()12
0

@ converges for f~2, f~' and white FM y
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A statistical estimator as well as a spectral analysis tool

Practical use of the Allan variance ~ N h
Practical e variance

Allan vari

Convergence criterion: the moment condition

Convergence for drift )

0'}2,(7') is a first-order difference (derivative):
@ not sensitive to constant (lin. ph. drift)
@ sensitive to linear frequency drift

Convergence for power-law noise )
oyr) = haf |Hy(f) df H,O2

@ converges for f~2, f~' and white FM y
@ does not converge for f' and 2 FM
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A statistical estimator as well as a spectral analysis tool

Practical use of the Allan variance ~ N h
Practical e variance

Allan vari

Convergence criterion: the moment condition

Convergence for drift )

0'}2,(7') is a first-order difference (derivative):
@ not sensitive to constant (lin. ph. drift)
@ sensitive to linear frequency drift

Convergence for power-law noise )
o2(r) = i hof® |H, (f)|? df

@ converges for f~2, f~' and white FM
@ does not converge for f' and 2 FM
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A statistical estimator as well as a spectral analysis tool
Practical calculation of the Allan variance
Allan variance versus Allan deviation

Convergence criterion: the moment condition

Practical use of the Allan variance

Convergence for drift )

0'}2,(7') is a first-order difference (derivative):
@ not sensitive to constant (lin. ph. drift)
@ sensitive to linear frequency drift

Convergence for power-law noise )
o2(r) = i hof® |H, (f)|? df

@ converges for f~2, f~' and white FM
@ does not converge for f' and 2 FM

The moment condition J
—+00

\Hy(f)|2 fedf converges

— 00
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A statistical estimator as well as a spectral analysis tool
Practical calculation of the Allan variance
Allan variance versus Allan deviation

Convergence criterion: the moment condition

Practical use of the Allan variance

Convergence for drift )

0'}2,(7') is a first-order difference (derivative):
@ not sensitive to constant (lin. ph. drift)
@ sensitive to linear frequency drift

Convergence for power-law noise )
of(r) = haf|H, (N df

@ converges for f~2, f~' and white FM
@ does not converge for f' and 2 FM

The moment condition J

+0oo

\Hy(f)|2 fedf converges <

— 00

F. Vernotte

—+00

h,(t)t9dt = 0

— 00

—a—1

for0<g<
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Practical use of the Allan variance

1e-10 77 68 % confidence interval —e—
.7e-13 1,
3.1e-13 7
4.8e-1 242
1.2e-151
5.2e-18
Ales . 4 1e-11
sin*(nrf _
op(1) =2 hafa(iz)df s
0 (w7 f) z
Q tet2}
f, is the high cut-off frequency N
1‘0 1‘00 1600 10‘000 1 Ol)‘()sggmm‘ :

Integration time t [s]

Sy(f) H /’sz_z ‘ /'7,17‘_1 ‘ hofo ‘ /7+1f+1 ‘ h+2f+2

271'2/'7,27' ‘ ‘ ho ‘ [104+3|n(277fh7')] hiq 3h oty
2 —— | 2In(2)h_ — + +
Uy(T) H 3 ) 27 4r272 4r272
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A statistical estimator as well as a spectral analysis tool
Practical calculation of the Allan variance
Allan variance versus Allan deviation

Practical use of the Allan variance

Practical calculation of the Allan variance

Calculation from time error samples

Calculation from frequency deviation J hy ()

1N2 T
2 L VN AL 2
ay(f)—zgo(yz 7)) = ()= hy(D]F ) ) t
)= SNIH(HIof r
Calculation from time error samples J -1h2
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A statistical estimal spectral analysis tool
Practical calculatio
Allan variance

Practical use of the Allan variance

Practical calculation of the Allan variance

Calculation from time error samples

Calculation from frequency deviation J hy ()
1N2 T
2 L VN AL 2
o3(r) = 2§(y2 7)) = ()= hy(D]F ) ) t
)= SNIH(HIof r
Calculation from time error samples J -1h2
® o2(r) = . S(f) |j2rfH, (f)|? of L)
= {Ix(t) = h(OF)  with (1) = dhéft) W2 <}
= ot
I T+-1721
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A statistical estimat ctral analysis tool
Practical
Allan var

Practical use of the Allan variance

Practical calculation of the Allan variance

Calculation from time error samples

Calculation from frequency deviation J hy ()
1N2
2 L VN AL 2
o3(r) = go(}@ 7)) = ()= hy(D]F ) ) t
)= SNIH(HIof r
Calculation from time error samples J -1h2
® o2(r) = . S(f) |j2rfH, (f)|? of L)
= {Ix(t) = h(OF)  with (1) = dhéft) W2 <}
1 5 =T T i
° oj(r) =5 ((F2 =)
g 1 2 < > I T+-1721

5 (Ix(t+7) —2x(t) + x(t = 7))
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A statistical estimator as well as a spectral analysis tool
Practical calculation of the Allan variance
Allan variance versus Allan deviation

Practical use of the Allan variance

Practical calculation of the Allan variance

Calculation from spectral density

Calculation from frequency deviation )
1 _ _ (o]
) =5 (Fe=1)F) =  SNIH(NFdf
0
Calculation from spectral density )
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A statistical estimator as well as a spectral analysis tool
Practical calculation of the Allan variance
Allan variance versus Allan deviation

Practical use of the Allan variance

Practical calculation of the Allan variance

Calculation from spectral density

Calculation from frequency deviation )
1 _ _ (o]
) =5 (Fe=1)F) =  SNIH(NFdf
0
Calculation from spectral density )

From a Phase Noise Measurement System:
Sy(fk) with fkE{f1,2f1,...,kf1,...,Nf1}
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A statistical estimator as well as a spectral analysis tool
Practical calculation of the Allan variance
Allan variance versus Allan deviation

Practical use of the Allan variance

Practical calculation of the Allan variance

Calculation from spectral density

Calculation from frequency deviation )
1 _ _ (o]
) =5 (Fe=1)F) =  SNIH(NFdf
0
Calculation from spectral density )

From a Phase Noise Measurement System:
Sy(fk) with fkE{f1,2f1,...,kf1,...,Nf1}

N i 4
2, \ sin®(wTkfy)
o(r) =2 sy(mq)i(wkf1 B f

k=1
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. . A statistical estimator as well as a spectral analysis tool
Practical use of the Allan variance . . .

Practical calculation of the Allan variance

Allan variance versus Allan deviation

Practical calculation of the Allan variance

Calculation from spectral density

Calculation from frequency deviation

2 =3 (T -7R) = S(NIH(NE

Calculation from spectral density

From a Phase Noise Measurement System:
Sy(fk) with fkE{f1,2f1,...,kf1,...,Nf1}

N sin*(r7kfy)

2
=2 =3 4
o3 (r) ; Sy(kf) (K 2 f
fy is the bandwidth of the system
F. Vernotte Variance measurements



A statistical estimator as well as a spectral analysis tool
Practical calculation of the Allan variance
Allan variance versus Allan deviation

Practical use of the Allan variance

Allan variance with or without overlapping

Allan variance with overlapping

T=37 To-Steps moving average

|
\

iigl

Allan variance without overlapping

4 Yk
T =37
»T0< t
F. Vernotte Variance measurements



A statistical estimator as well as a spectral analysis tool

Practical use of the Allan variance . . .
Practical calculation of the Allan variance
Allan variance versus Allan deviation

Allan variance with or without overlapping

Allan variance with overlapping

Yk ]
To-steps moving average

T =370

-

i

Allan variance without overlapping

Yk

T =370

iigl
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A statistical estimator as well as a spectral analysis tool

Practical use of the Allan variance . . .
Practical calculation of the Allan variance
Allan variance versus Allan deviation

Allan variance with or without overlapping

Allan variance with overlapping

Yk ]
To-steps moving average

T =370

—T0—
- t

U

Allan variance without overlapping

Yk

T =370

—T0— t

iigl
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A statistical estimator as well as a spectral analysis tool

Practical use of the Allan variance . . .
Practical calculation of the Allan variance
Allan variance versus Allan deviation

Allan variance with or without overlapping

Allan variance with overlapping

Yk

T =31 To-Steps moving average

U

Allan variance without overlapping

Yk

T =370

T
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Practical use of the Allan variance . . .
Practical calculation of the Allan variance
Allan variance versus Allan deviation

Allan variance with or without overlapping

Allan variance with overlapping

Yk

T =31 To-Steps moving average

-

il

Allan variance without overlapping

Yk

T =370

T
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Practical use of the Allan variance . . .
Practical calculation of the Allan variance
Allan variance versus Allan deviation

Allan variance with or without overlapping

Allan variance with overlapping

Yk

T =31 To-Steps moving average

-

i

Allan variance without overlapping

Yk

T =370

T
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Practical use of the Allan variance . . .
Practical calculation of the Allan variance
Allan variance versus Allan deviation

Allan variance with or without overlapping

Allan variance with overlapping

Yk ]
To-steps moving average
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Allan variance without overlapping

Yk

T =370

iigl

F. Vernotte Variance measurements



A statistical estimator as well as a spectral analysis tool
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To-steps moving average

T =370

Allan variance without overlapping

Yk

T =370

iigl

F. Vernotte Variance measurements



Practical use of the Allan variance

A statistical estimator as well as a spectral analysis tool
Practical calculation of the Allan variance
Allan variance versus Allan deviation

Allan variance with or without overlapping

Allan variance with overlapping

Yk

T =370

I

To-steps moving average

Allan variance without overlapping

Yk

T =370

T

F. Vernotte

Variance measurements




Practical use of the Allan variance

A statistical estimator as well as a spectral analysis tool
Practical calculation of the Allan variance
Allan variance versus Allan deviation

Allan variance with or without overlapping

Allan variance with overlapping

Yk

T =370

1%

To-steps moving average

Allan variance without overlapping

Yk

T =370

T
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A statistical estimator as well as a spectral analysis tool

Practical use of the Allan variance . . .
Practical calculation of the Allan variance
Allan variance versus Allan deviation

Allan variance with or without overlapping

Allan variance with overlapping

Yk ]
To-steps moving average

T =370

A WJ t

Allan variance without overlapping

Yk

T =370

iigl
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A statistical estimator as well as a spectral analysis tool

Practical use of the Allan variance . . .
Practical calculation of the Allan variance
Allan variance versus Allan deviation

Allan variance with or without overlapping

Allan variance with overlapping

Yk

T =31 To-Steps moving average

—T0— ] |
- —H’ t

Allan variance without overlapping

Yk

T =370

iigl
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A statistical estimator as well as a spectral analysis tool

Practical use of the Allan variance . . .
Practical calculation of the Allan variance
Allan variance versus Allan deviation

Allan variance with or without overlapping

Allan variance with overlapping

Yk

T =31 To-Steps moving average

A TW t

Allan variance without overlapping

Yk

T =370

iigl
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Practical use of the Allan variance

A statistical estimator as well as a spectral analysis tool
Practical calculation of the Allan variance
Allan variance versus Allan deviation

Allan variance with or without overlapping

Allan variance with overlapping

Yk

T =370

T

Bl

To-steps moving average

Allan variance without overlapping

Yk

T =370

T
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A statistical estimator as well as a spectral analysis tool

Practical use of the Allan variance . . .
Practical calculation of the Allan variance
Allan variance versus Allan deviation

Allan variance with or without overlapping

Allan variance with overlapping

Yk
T =370 —

—T0—
= ﬂ_”ﬁ t

Allan variance without overlapping

Yk

To-steps moving average

J

_3 Shifted by 7-steps :
T 70 =310 Y = (1+¥2+¥5)/3
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A statistical estimator as well as a spectral analysis tool

Practical use of the Allan variance . . .
Practical calculation of the Allan variance
Allan variance versus Allan deviation

Allan variance with or without overlapping

Allan variance with overlapping

Yk
T =370 —

—T0—
= ﬂ_”ﬁ t

Allan variance without overlapping

Yk

To-steps moving average

J

_3 Shifted by 7-steps :
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A statistical estimator as well as a spectral analysis tool

Practical use of the Allan variance . . .
Practical calculation of the Allan variance
Allan variance versus Allan deviation

Allan variance with or without overlapping

Allan variance with overlapping

Yk
T =370 —

—T0—
= ﬂ_”ﬁ t

Allan variance without overlapping

Yk

To-steps moving average

J

_3 Shifted by 7-steps :
T 70 =310 Y = (1+¥2+¥5)/3
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Practical use of the Allan variance

A statistical estimator as well as a spectral analysis tool
Practical calculation of the Allan variance
Allan variance versus Allan deviation

Allan variance with or without overlapping

Allan variance with overlapping

Yk

T =370

Th

o

To-steps moving average

Allan variance without overlapping

J

Yk

T =370

T

[T

Shifted by 7-steps :

F. Vernotte

Variance measurements

] =31 Yi = (Ji+y+73)/3
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A statistical estimator as well as a spectral analysis tool

Practical use of the Allan variance . . .
Practical calculation of the Allan variance
Allan variance versus Allan deviation

Allan variance with or without

overlapping

Allan variance with overlapping

Yk

T =370

—T0—
- m t

Allan variance without overlapping

To-steps moving average
Benefits and drawbacks :

@ lower dispersion
@ more correlated estimates

Yk

A TEFW__ 1t

Shifted by 7-steps :
=310 Y= (+y2t¥s)/3

Benefits and drawbacks :
@ less correlated estimates

F. Vernotte

@ higher dispersion

Variance measurements



estimator as wel ctral analysis tool
Iculation of the Al nce
Allan variance versus Allan deviation

Practical use of the Allan variance

Allan variance versus Allan deviation

ADEV(7) = 0y(7) = 0}2,(7')
Physical meaning )
Benefits and drawbacks J
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A statistical estimator as well as a spectral analysis tool
Practical calculation of the Allan variance
Allan variance versus Allan deviation

Practical use of the Allan variance

Allan variance versus Allan deviation

ADEV(7) = 0y(7) = 0}2,(7')
Physical meaning )
At

® gy(7) = —

Ex.:Csclock oy(r = 1day) = 10~
= At~107".10°=10"° =1 ns over 1 day

Benefits and drawbacks J
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A statistical estimator as well as a spectral analysis tool

Practical use of the Allan variance .
Practical calculation of the Allan variance

Allan variance versus Allan deviation

Allan variance versus Allan deviation

ADEV(7) = 0y(7) = 0}2,(7')

Physical meaning

At
@ oy(7) = —

Ex.:Csclock oy(r = 1day) = 10~
= At~107".10°=10"° =1 ns over 1 day

@ oy(r) = IA/—Of (during 1)

Ex.: H-Maser @ 100 MHz o, (7 = Thour) = 10~
= Afx~10"".108 =10% = 1Hz over 1 hour

Benefits and drawbacks
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A statistical estimator as well as a spectral analysis tool

Practical use of the Allan variance .
Practical calculation of the Allan variance

Allan variance versus Allan deviation

Allan variance versus Allan deviation

ADEV(7) = 0y(7) = 0}2,(7')

Physical meaning

At
@ oy(7) = —

Ex.:Csclock oy(r = 1day) = 10~
= At~107".10°=10"° =1 ns over 1 day

@ oy(r) = IA/—Of (during 1)

Ex.: H-Maser @ 100 MHz o, (7 = Thour) = 10~
= Afx~10"".108 =10% = 1Hz over 1 hour

Benefits and drawbacks

@ Easy to interpret
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A statistical estimator as well as a spectral analysis tool

Practical use of the Allan variance .
Practical calculation of the Allan variance

Allan variance versus Allan deviation

Allan variance versus Allan deviation

ADEV(1) = 0y(7) = 0}2,(7')

Physical meaning

At
@ oy(7) = —

Ex.:Csclock oy(r = 1day) = 10~
= At~107".10°=10"° =1 ns over 1 day

@ oy(r) = IA/—Of (during 1)

Ex.: H-Maser @ 100 MHz o, (7 = Thour) = 10~
= Afx~10"".108 =10% = 1Hz over 1 hour

Benefits and drawbacks

@ Easy to interpret
@ Biased

F. Vernotte Variance measurements



f Freedom
ce/deviation measures
Statistics of the Allan variance and the Allan deviation

Outline

9 Statistics of the Allan variance and the Allan deviation
@ Chi-square and Equivalent Degrees of Freedom
@ Confidence interval over the Allan variance/deviation measures
@ Parameter estimation
@ Increasing the number of edf: the Total variance

F. Vernotte Variance measurements



Chi- square and Equivalent Degrees of Freedom

c er the Allan variance/deviation measures
Statistics of the Allan variance and the Allan deviation 3 r estimation
umber of edf: the Total variance
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Chi- square and Equivalent Degrees of Freedom
c ver the Allan varianc ation measures
Statistics of the Allan variance and the Allan deviation 3 r ion
number of edf: the Total variance

Chi-squared and Rayleigh dlstrlbutlon

Allan variance: o2(r) = % <(J72 -y )2>
. . 1 _
Estimate: 55(7) = N Z (72— 1)

@ y» — yq: Gaussian centered values
o (2 — )% 2 distribution

1 17 5 . . .
N Z (72 — #1)?: x% distribution
i=1
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Statistics of the Allan variance and the Allan deviation

Chi-squared and Rayleigh dlstrlbutlon

Allan variance: o2(r) = % <(J72 -y )2>
. . 1 _
Estimate: 55(7) = N Z (72— 1)

@ y» — y¢: Gaussian centered values
® (J2 — y1)?: 2 distribution

LN Z (72 — #1)?: x% distribution
i=1

Allan deviation: o, (1) = 1 <(}72 - ¥ )2>

N
Estimate: 5,(7) = 21W Z Yo — y1 = Yy distributed (Rayleigh)
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i-square and Equivalent Degrees of Freedom
] nc over the Allan variance/deviation measures
Statistics of the Allan variance and the Allan deviation

Chi-squared and Rayleigh distribljtieh

Allan variance: o2(r) = % <(J72 -y )2>
. . 1 _
Estimate: 55(7) = N Z (72— 1)

@ y» — y¢: Gaussian centered values
® (J2 — y1)?: 2 distribution

1 17 by . . .
N > (- )?: \ distribution
i=1

Allan deviation: o, (1) = % <(}72 - ¥ )2>

Estimate: 5,(7) = 21W Z (Jo — #1)? = x distributed (Rayleigh)

N is the number of Equivalent Degrees of Freedom (EDF)
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Chi- square and Equivalent Degrees of Freedom
Confi of er the Allan variance/deviation measures
Statistics of the Allan variance and the Allan deviation 2 r n
number of edf: the Total variance

Reminder of the Equivalent Degrees of Freedom

Meaning of the EDF )

Mea“(XLZ/) =v and Variance(xi) =2
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Chi- square and Equivalent Degrees of Freedom
on ver the Allan variance/deviation measures

Statistics of the Allan variance and the Allan deviation 2 tion
he number of edf: the Total variance

Reminder of the Equivalent Degrees of Freedom

Meaning of the EDF )

Mea“(XLZ/) =v and Variance(xi) =2
The EDF v contains the information about the dispersion of the
random variable x2
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Chi-square and Equivalent Degrees of Freedom

Confidence interval over the Allan variance/deviation measures
Statistics of the Allan variance and the Allan deviation Parameter estimation

Increasing the number of edf: the Total variance

Reminder of the Equivalent Degrees of Freedom

Meaning of the EDF )

Mean(x2) =~ and Variance(x2) = 2v

The EDF v contains the information about the dispersion of the
random variable x2

Estimation of the EDF J

N

R 1 _ _

B =g -7 = Xk
i=1
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Chi-square and Equivalent Degrees of Freedom

Confidence interval over the Allan variance/deviation measures
Statistics of the Allan variance and the Allan deviation Parameter estimation

Increasing the number of edf: the Total variance

Reminder of the Equivalent Degrees of Freedom

Meaning of the EDF )

Mean(x2) =~ and Variance(x2) = 2v

The EDF v contains the information about the dispersion of the
random variable x2

Estimation of the EDF J

N

R 1 - oo

62(r) = o > (72— 7)? = x%if {712 ..} uncorrelated!
i=1
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Chi-square and Equivalent Degrees of Freedom

Confidence interval over the Allan variance/deviation measures
Statistics of the Allan variance and the Allan deviation Parameter estimation

Increasing the number of edf: the Total variance

Reminder of the Equivalent Degrees of Freedom

Meaning of the EDF )

Mea“(XlZ/) =v and Variance()(i) =2
The EDF v contains the information about the dispersion of the
random variable x2

Estimation of the EDF J
N

. 1 - -

52(r) = o ; (72— ) = X% if {J1.7, ...} uncorrelated!

False:

@ for low frequency noises (flicker and random walk FM)
@ with overlapping variances
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Chi-square and Equivalent Degrees of Freedom

Confidence interval over the Allan variance/deviation measures
Statistics of the Allan variance and the Allan deviation Parameter estimation

Increasing the number of edf: the Total variance

Reminder of the Equivalent Degrees of Freedom

Meaning of the EDF )

Mea“(XlZ/) =v and Variance()(i) =2
The EDF v contains the information about the dispersion of the
random variable x2

Estimation of the EDF J
N

. 1 - -

52(r) = o ; (72— ) = X% if {717, ...} uncorrelated!

False:

@ for low frequency noises (flicker and random walk FM)
@ with overlapping variances
Algorithm for estimating the EDF:

@ C. Greenhall and W. Riley, 2003, “Uncertainty of Stability
Variances Based on Finite Differences” (351 PTTI).
Used in Stable 32 as well as in SigmaTheta.
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Chi-square and Equivalent Degrees of Freedom
fiden: | over the Allan nc tion measures
Statistics of the Allan variance and the Allan deviation ameter estimation
g the number of edf: the Total variance

-

= 0.01 L W1
€ : L |
b>‘ e \}\
> L4
> |
[a)
< 0.001

0.0001

1le-05

1 10 100 1000 10000

Integration time T
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Chi-square and Equivalent Degrees of Freedom
er the Allan varianc iation measures
Statistics of the Allan variance and the Allan deviation Parameter estimation
Incr number of edf: the Total variance

= 0.01 §ig
= ]
8 T \}
> v=10 %
I'IDJ v—ti 3
< 0.001 :
\oEL
0.0001
1le-05
1 10 100 1000 10000

Integration time T
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quare and Equivalent Degrees of Freedom

] er the Allan var
Statistics of the Allan variance and the Allan deviation arameter estimation
Incre: g umber of edf: the Totz

0.01 i i :
vzic\}

v=4.3

ADEV oy(r)

0.001

Does this mean that the errorbars should be longer down wards
than upwglég(i?

1le-05
1 10 100 1000 10000

Integration time t
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Statistics of the Allan variance and the Allan deviation

sing the number of edf: the Total variance

Dispersion of Allan deviation estimates

. )
0.01 LA 1

:jc\}

v=4.3

ADEV oy(r)

0.001

Does this mean that the errorbars should be longer down wards
than upwglég(i?

No, it doesn’t!

1le-05

1 10 100 1000 10000
Integration time t
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Chi-square and Equivalent Degrees of Freedom
Confidence interval over the Allan variance/deviation measures
Statistics of the Allan variance and the Allan deviation Paramete! mation

Increa number of edf: the Total variance

World of the model versus world of measures

@ 6 is the model parameter
@ ¢ is a measure of the parameter
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Chi-square and Equivalent Degrees of Freedom
Confidence interval over the Allan variance/deviation measures
Statistics of the Allan variance and the Allan deviation ara mation
number of edf: the Total variance

World of the model versus world of measures

@ 6 is the model parameter
@ ¢ is a measure of the parameter

Example:
Parameter o, (r =10s) = hy/20 where hy is the white FM level
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Chi-square and Equivalent Degrees of Freedom
Confidence interval over the Allan variance/deviation measures
Statistics of the Allan variance and the Allan deviation ara mation
number of edf: the Total variance

World of the model versus world of measures

@ 6 is the model parameter
@ ¢ is a measure of the parameter

Example:
Parameter o, (r =10s) = hy/20 where hy is the white FM level
Measure &,(7) is a measure of o, (7 =10 s)
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Chi-square and Equivalent Degrees of Freedom
Confidence interval over the Allan variance/deviation measures
Statistics of the Allan variance and the Allan deviation ara mation
he number of edf: the Total variance

World of the model versus world of measures

@ 6 is the model parameter
@ ¢ is a measure of the parameter

Example:
Parameter o, (r =10s) = hy/20 where hy is the white FM level
Measure &,(7) is a measure of o, (7 =10 s)

World of the model (direct problem): )

Knowing the parameter 6y, how is the measure ¢ distributed?
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Chi-square and Equivalent Degrees of Freedom
Confidence interval over the Allan variance/deviation measures
Statistics of the Allan variance and the Allan deviation ara mation
he number of edf: the Total variance

World of the model versus world of measures

@ 6 is the model parameter
@ ¢ is a measure of the parameter

Example:
Parameter o, (r =10s) = hy/20 where hy is the white FM level
Measure &,(7) is a measure of o, (7 =10 s)

World of the model (direct problem): )

Knowing the parameter 6y, how is the measure ¢ distributed?
Only valid for simulations!
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Chi-square and Equivalent Degrees of Freedom
Confidence interval over the Allan variance/deviation measures
Statistics of the Allan variance and the Allan deviation are mation
he number of edf: the Total variance

World of the model versus world of measures

@ 6 is the model parameter
@ ¢ is a measure of the parameter

Example:
Parameter o,(r =108) = hy/20 where hy is the white FM level
Measure &,(7) is a measure of o, (7 =10 s)

World of the model (direct problem): )

Knowing the parameter 6y, how is the measure ¢ distributed?
Only valid for simulations!

World of the measures (inverse problem): )

Knowing the measure &j, how to estimate a confidence interval over 67

F. Vernotte Variance measurements



Chi-square and Equivalent Degrees of Freedom

Confidence interval over the Allan variance/deviation measures
Statistics of the Allan variance and the Allan deviation Parameter estimation

Increasing the number of edf: the Total variance

World of the model versus world of measures

@ 6 is the model parameter
@ ¢ is a measure of the parameter

Example:
Parameter o,(r =108) = hy/20 where hy is the white FM level
Measure &,(7) is a measure of o, (7 =10 s)

World of the model (direct problem): )

Knowing the parameter 6y, how is the measure ¢ distributed?
Only valid for simulations!

World of the measures (inverse problem): )

Knowing the measure &j, how to estimate a confidence interval over 67
It’s the right question of the metrologist!

F. Vernotte Variance measurements 24



Chi-square and Equivalent Degr of Freedom

Confidence interval over the Allan variance/deviation measures
Statistics of the Allan variance and the Allan deviation Parameter mation

Model parameter and measure for a x» distribution

10000

1000

100

10

Measure &
=

0.1

0.01

0.001

0.0001 | .
0.1 1 10 100 1000
Parameter 6
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Chi-square and Equivalent Degrees of Freedom

Confidence interval over the Allan variance/deviation measures
Statistics of the Allan variance and the Allan deviation P: etel ation

number of edf: the Total variance

Model parameter and measure for a x» distribution

10000

1000

100

10

Measure &
=

0.1

0.01

0.001

Let us fix the measure to=1+5%...
0.0001

0.1 1 10 100 1000
Parameter 6
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Chi-square and Equivalent Degrees of Freedom
Confidence interval over the Allan variance/deviation measures
: ete mation

Statistics of the Allan variance and the Allan deviation

number of edf: the Total variance

Model parameter values for a measure & ~ 1

Theoretical results versus 20,000 simulations

1.06

T
25% 95 % 25 % <6>=1.77

- e<ln(e)> =133
1.04

1.02

Measure &
P

0.96

0.1 0.521 1 6.28 10 100 1000
Parameter 6

F. Vernotte Variance measurements



sare and Equivalent Deg Freedom

idence interval over the Allan variance/deviation measures
Statistics of the Allan variance and the Allan deviation

umber of edf: the Total

Model parameter values for a measure & ~ 1

Theoretical results versus 20,000 simulations

1.06

T
25% 95 % 25 % <6>=1.77

- e<ln(e)> =133
1.04

1.02

Measure &
P

0.96

The errorbars should be shorter downward than upward!
0.94 .
0.1 0.521 1 6.28 10 100 1000

Parameter 6
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are and Equivalent Degrees of Freedom
Confidence interval over the Allan variance/deviation measures
Statistics of the Allan variance and the Allan deviation Parameter ation
Incre umber of edf: the Total variance

Study of a x distribution with 2 degrees of freedom

Direct problem

@ Probability density function: p(x) = Xe*XZ/2
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Chi-square and Equivalent Degrees of Freedom
Confidence interval over the Allan variance/deviation measures
Statistics of the Allan variance and the Allan deviation Parameter estimation

Incre he number of edf: the Total variance

Study of a x distribution with 2 degrees of freedom

Direct problem

@ Probability density function: p(x) = xe™* */2

@ The pdf is normalized: p(x)dx =1
0
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Chi-square and Equivalent Degrees of Freedom
Confldence interval over the Allan variance/deviation measures
Statistics of the Allan variance and the Allan deviation
numbwn of edf: the Total variance

Study of a x distribution with 2 degrees of freedom

Direct problem

@ Probability density function: p(x) = xe™* */2

oo

@ The pdf is normalized: p(x)dx =1
0

o0

@ Mathematical expectation: p = X - p(x)dx =
0

Nl = |

F. Vernotte Variance measurements



Statistics of the Allan variance and the Allan deviation E r estimation
the number of edf: the Total variance

Study of a x distribution with 2 degrees of freedom

Direct problem

@ Probability density function: p(x) = xe™* */2

oo

@ The pdf is normalized: p(x)dx =1
0

o0

@ Mathematical expectation: p = X - p(x)dx =
0

Nl = |

X
e Cumulative distribution function: P(x) =  p(y)dy =1 — e x/2
0
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Chi-square and Equivalent Degrees of Freedom

Confidence interval over the Allan variance/deviation measures
Statistics of the Allan variance and the Allan deviation Parameter estimation

Increa number of edf: the Total variance

Study of a x distribution with 2 degrees of freedom

Direct problem

@ Probability density function: p(x) = Xe*XZ/2

@ The pdf is normalized: p(x)dx =1
0

o0

@ Mathematical expectation: ;1 = x-p(x)dx = g
0
X
o Cumulative distribution function: P(x) =  p(y)dy =1 — e X/2
0
@ Inverse cdf: P~'(a) = —2In(1 — )
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Chi-square and Equivalent Degrees of Freedom
Confidence interval over the Allan variance/deviation measures
Statistics of the Allan variance and the Allan deviation mation
he number of edf: the Total variance

Confidence Interval of a x> random variable

@ {...x;...} is aset of realizations of the random variable x

e P~1(0.025) ~ 0.22502

= x; < 0.22502 with 2.5% confidence
e P7'(0.975) ~ 2.7162

= x;<27162 with 97.5% confidence

F. Vernotte Variance measurements



and Equivalent Degrees of Freedom
Confidence interval over the Allan variance/deviation measures
Statistics of the Allan variance and the Allan deviation ameter estimation
the number of edf: the Total variance

Confidence Interval of a x> random variable

@ {...x;...} is aset of realizations of the random variable x

e P~1(0.025) ~ 0.22502

= x; < 0.22502 with 2.5% confidence
e P7'(0.975) ~ 2.7162

= x;<27162 with 97.5% confidence

@ Confidence Interval:

o E(x)~1.2533
@ 0.22502 < x; < 2.7162  with 95% confidence
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Chi-square and Equivalent Degrees of Freedom
Confidence interval over the Allan variance/deviation measures
Statistics of the Allan variance and the Allan deviation arameter estimation
number of edf: the Total variance

Confidence Interval of a x> random variable

@ {...x;...} is aset of realizations of the random variable x

e P~1(0.025) ~ 0.22502

= x; < 0.22502 with 2.5% confidence
e P7'(0.975) ~ 2.7162

= x;<27162 with 97.5% confidence

@ Confidence Interval:

o E(x)~1.2533
@ 0.22502 < x; < 2.7162  with 95% confidence

@ General case of a random variable x = k - x

o Estimation of the scale factor: k = @ ~ S
E(x)

W
o = 022502 -k < x; <2.7162 -k with 95% confidence
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sare and Equivalent De of Freedom
idence interval over the Allan variance/deviation measures

Statistics of the Allan variance and the Allan deviation

o 0.6
>
= /
2 05
c
9]
2 / \
= 0.4 mean
2]
© / 125\
5
T 0.3
% /
o4
< 0.2
5 \
L
[a)
o 0.1
25% 95(% 25%
0 :
0023 1 P 2.72 3 4 5

Rayleigh random variable realization
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Chi-square and Equivalent Degrees of Freedom
Confidence interval over the Allan variance/deviation measures
Statistics of the Allan variance and the Allan deviation Parameter estimation

Increasing the number of edf: the Total variance

Conditionnal probabilities

Reduced variable (l)

@ Let us consider the standard x3 variable: x5 = X2 + X2
where X; and X, are 2 Gaussian centered standard random
variables

1
= E(3) =2 = E(ng):r
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Chi-square and Equivalent Degrees of Freedom

Confidence interval over the Allan variance/deviation measures
Statistics of the Allan variance and the Allan deviation Parameter estimation

Increasing the number of edf: the Total variance

Conditionnal probabilities

Reduced variable (l)

@ Let us consider the standard x3 variable: x5 = X2 + X2
where X; and X, are 2 Gaussian centered standard random
variables

1
= E(3)=2 = E §X§ =1.

@ We assume that 67(7) = &% is x5 distributed and is an unbiased
estimator of the parameter o3(7) = 6°:

52
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Chi-square and Equivalent Degrees of Freedom

Confidence interval over the Allan variance/deviation measures
Statistics of the Allan variance and the Allan deviation Parameter estimation

Increasing the number of edf: the Total variance

Conditionnal probabilities

Reduced variable (l)

@ Let us consider the standard x3 variable: x5 = X2 + X2
where X; and X, are 2 Gaussian centered standard random
variables

1
= E(g)=2 = E 57 =1
@ We assume that 67(7) = &% is x5 distributed and is an unbiased

estimator of the parameter o3(7) = 6°:

52
@ We can then define the reduced variable x3 as:

2 - 2%
X2 0
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Chi-square and Equivalent Degrees of Freedom

Confidence interval over the Allan variance/deviation measures
Statistics of the Allan variance and the Allan deviation Parameter estimation

Increasing the number of edf: the Total variance

Reduced variable (ll)

@ By extension, we assume that 6,(7) = £ is x» distributed
and ¢ is an estimator of the parameter o, (7) = 6.
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Chi-square and Equivalent Degrees of Freedom
Confidence interval over the Allan variance/deviation measures
Statistics of the Allan variance and the Allan deviation Pa mation
number of edf: the Total variance

Reduced variable (Il)

@ By extension, we assume that 6,(7) = £ is x» distributed
and ¢ is an estimator of the parameter o, (7) = 6.

@ We can then define the reduced variable x as:

_é
x = V2&.
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Chi-square and Equivalent Degrees of Freedom
Confidence interval over the Allan variance/deviation measures
Statistics of the Allan variance and the Allan deviation Pa mation
number of edf: the Total variance

Reduced variable (ll)

@ By extension, we assume that 6,(7) = £ is x» distributed
and ¢ is an estimator of the parameter o, (7) = 6.

@ We can then define the reduced variable x as:
_ 38
X_ﬁg
@ The differential d is then:

dx—a—x

Ox
f%@+@w
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Chi-square and Equivalent Degrees of Freedom
Confidence interval over the Allan variance/deviation measures
Statistics of the Allan variance and the Allan deviation Pa mation
number of edf: the Total variance

Reduced variable (ll)

@ By extension, we assume that 6,(7) = £ is x» distributed
and ¢ is an estimator of the parameter o, (7) = 6.

@ We can then define the reduced variable x as:
_ 38
X_ﬁg
@ The differential d is then:

dx—a—x

Ox
f%@+@w

@ From p(x) we can deduce P(£|6o)
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Chi-square and Equivalent Degrees of Freedom
Confidence interval over the Allan variance/deviation measures
Statistics of the Allan variance and the Allan deviation mation
he number of edf: the Total variance

Reduced variable (ll)

@ By extension, we assume that 6,(7) = £ is x» distributed
and ¢ is an estimator of the parameter o, (7) = 6.

@ We can then define the reduced variable x as:
_ 38
x=V2 5
@ The differential d is then:

dx—a—x

ox
= B dé + %de.

@ From p(x) we can deduce P(£|6y) and P(0|&o)
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Chi-square and Equivalent Degrees of Freedom
Confidence interval over the Allan variance/deviation measures
Statistics of the Allan variance and the Allan deviation ara mation
number of edf: the Total variance

Parameter estimation from a single measure

Usual frequentist reasonning

We assume that the measure ¢ represents the estimate 5,(r) and the
parameter 0 stands for the real unknown value o, (7).

@ Reduced variable: y = v/2¢/0
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Chi-square and Equivalent Degrees of Freedom
Confidence interval over the Allan variance/deviation measures
Statistics of the Allan variance and the Allan deviation ara mation
number of edf: the Total variance

Parameter estimation from a single measure

Usual frequentist reasonning

We assume that the measure ¢ represents the estimate 5,(r) and the
parameter 0 stands for the real unknown value o, (7).

@ Reduced variable: y = v/2¢/0
@ Low bound: B, 5, =~ 0.22502
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Chi-square and Equivalent Degrees of Freedom
Confidence interval over the Allan variance/deviation measures
Statistics of the Allan variance and the Allan deviation ara mation
number of edf: the Total variance

Parameter estimation from a single measure

Usual frequentist reasonning

We assume that the measure ¢ represents the estimate 5,(r) and the
parameter 0 stands for the real unknown value o, (7).

@ Reduced variable: y = v/2¢/0
@ Low bound: B, 5, =~ 0.22502
@ High bound: Bg7 5, ~ 2.7162
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Chi-square and Equivalent Degrees of Freedom
Confidence interval over the Allan variance/deviation measures
Statistics of the Allan variance and the Allan deviation mation
he number of edf: the Total variance

Parameter estimation from a single measure

Usual frequentist reasonning

We assume that the measure ¢ represents the estimate 5,(r) and the
parameter 0 stands for the real unknown value o, (7).

@ Reduced variable: y = v/2¢/0

@ Low bound: B, 5, =~ 0.22502

@ High bound: Bg7 5, ~ 2.7162

@ 95 % confidence interval: 0.22502 < v/2¢/6 < 2.7162
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Chi-square and Equivalent Degrees of Freedom

Confidence interval over the Allan variance/deviation measures
Statistics of the Allan variance and the Allan deviation Parameter estimation

Increasing the number of edf: the Total variance

Parameter estimation from a single measure

Usual frequentist reasonning

We assume that the measure ¢ represents the estimate 5,(r) and the
parameter 0 stands for the real unknown value o, (7).

@ Reduced variable: y = v/2¢/0

@ Low bound: B, 5, =~ 0.22502

@ High bound: Bg7 5, ~ 2.7162

@ 95 % confidence interval: 0.22502 < v/2¢/6 < 2.7162

V26 <p< V2

@ Frequentist reversal: 57162 0.22502

@ 95 %
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Chi-square and Equivalent Degrees of Freedom
Confidence interval over the Allan variance/deviation measures
Statistics of the Allan variance and the Allan deviation 2 mation
number of edf: the Total variance

Parameter estimation from a single measure

Usual frequentist reasonning

We assume that the measure ¢ represents the estimate 5,(r) and the
parameter 0 stands for the real unknown value o, (7).

@ Reduced variable: y = v/2¢/0

@ Low bound: B, 5, =~ 0.22502

@ High bound: Bg7 5, ~ 2.7162

@ 95 % confidence interval: 0.22502 < v/2¢/6 < 2.7162

V2¢& V2¢&
27162 < < 0.22502

= 0.52066 - & < 6 < 6.2847 - £ with 95 % confidence.

@ Frequentist reversal: @ 95 %
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Chi-square and Equivalent Degrees of Freedom
Confidence interval over the Allan variance/deviation measures
Statistics of the Allan variance and the Allan deviation 2 mation
number of edf: the Total variance

Parameter estimation from a single measure

Usual frequentist reasonning

We assume that the measure ¢ represents the estimate 5,(r) and the
parameter 0 stands for the real unknown value o, (7).

@ Reduced variable: y = v/2¢/0

@ Low bound: B, 5, =~ 0.22502

@ High bound: Bg7 5, ~ 2.7162

@ 95 % confidence interval: 0.22502 < v/2¢/6 < 2.7162

V2¢& V2¢&
27162 < < 0.22502

= 0.52066 - & < 6 < 6.2847 - £ with 95 % confidence.

@ Frequentist reversal: @ 95 %

We obtain directly the same result from P(6|&) (as well as from the
Bayesian method with a total lack of knowledge prior).
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Chi-square and Equivalent Degrees of Freedom
Confidence interval over the Allan variance/deviation measures

Statistics of the Allan variance and the Allan deviation Parameter estimation
Increasing the number of edf: the Total variance

Generalization to a y,, distribution

@ Reduced variable: y = ﬁ§

2171//2 v— 1e x2/2
@ pdf: p(x) = r(v/2)

vl
@ Mathematical expectation: ;, = # 5 )
(%)

X2

o cdf: P(y) = % o
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uare and Equivalent Deg
Confidence interv er the Al
Statistics of the Allan variance and the Allan deviation Parameter estimation
Increasing the number of edf: the Total variance

Parameter estimation

Allan variance

@ We assume that 65(7) = |s x3 distributed and is an estimator
of the parameter o5(7) =
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n measures
Statistics of the Allan variance and the Allan deviation
Increasing the number of edf: the Total variance

Parameter estimation

Allan variance

@ We assume that & ( = |s X2 distributed and is an estimator
of the parameter o5(7) =
2
@ Reduced variable: x3 = %2
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Chi-square and Equivalent Degrees of Freedom

Co 1ce interval over the Allan variance/deviation measures
Statistics of the Allan variance and the Allan deviation Parameter estimation

Increasing the number of edf: the Total variance

Parameter estimation

Allan variance

@ We assume that 65(7) = |s x3 distributed and is an estimator
of the parameter o5(7) =

. . §2

@ Reduced variable: y3 = 9—2

e Mathematical expectation: 3 =2

2
5:2@

= 2? )

F. Vernotte Variance measurements 34



c ation measures
Statistics of the Allan variance and the Allan deviation Parameuer estimation
Increasing the number of edf: the Total variance

Parameter estimation

Allan variance

@ We assume that 65(7) = |s x3 distributed and is an estimator
of the parameter o5(7) =
@ Reduced variable: y3 = g—z
e Mathematical expectation: 3 =2
&2 £
= 2? =2 & - 1

o For a given parameter ¢3: (2 =63
The average of the measures given by the parameter 62 is equal
to 62: ¢2 is an unbiased estimator of 6Z.
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c ation measures
Statistics of the Allan variance and the Allan deviation Parameuer estimation
Increasing the number of edf: the Total variance

Parameter estimation

Allan variance

@ We assume that 65(7) = |s x3 distributed and is an estimator
of the parameter o5(7) =
@ Reduced variable: y3 = g—z
e Mathematical expectation: 3 =2
&2 £
= 2? =2 & - 1

o For a given parameter ¢3: (2 =63
The average of the measures given by the parameter 62 is equal
to 62: ¢2 is an unbiased estimator of 6Z.

o For a given measure &5: 62 =&
The average of the parameter values which give the measure &2
is equal to 58: the measure §§ may be used for representing
the parameter 6?2 (for fitting. . .)
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c ation measures
Statistics of the Allan variance and the Allan deviation Parameuer estimation
Increasing the number of edf: the Total variance

Parameter estimation

Allan variance

@ We assume that 65(7) = |s x3 distributed and is an estimator
of the parameter o5(7) =
@ Reduced variable: y3 = g—z
e Mathematical expectation: 3 =2
&2 £
= 2? =2 & - 1

o For a given parameter ¢3: (2 =63
The average of the measures given by the parameter 62 is equal
to 62: ¢2 is an unbiased estimator of 6Z.

o For a given measure &5: 62 = ¢
The average of the parameter values which give the measure &2
is equal to 58: the measure §§ may be used for representing
the parameter 62 (for fitting. .. except in a log-log plot!)
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uare and Equivalent Deg
Confidence interv er the Al
Statistics of the Allan variance and the Allan deviation Parameter estimation
Increasing the number of edf: the Total variance

Parameter estimation

Allan deviation

@ We assume that 5, (7) = ¢ is x» distributed and is an estimator of
the parameter o, (7) = 6.
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n measures
Statistics of the Allan variance and the Allan deviation
Increasing the number of edf: the Total variance

Parameter estimation

Allan deviation

@ We assume that 6, (7

= £ is x» distributed and is an estimator of
the parameter o, (7) = 6.

@ Reduced variable: \3 = \@g

F. Vernotte Variance measurements 35



Chi-square and Equivalent Degrees of Freedom
Co 1ce interval over the Allan variance
Parameter estimation

Increasing the number of edf: the Total variance

viation measures
Statistics of the Allan variance and the Allan deviation

Parameter estimation

Allan deviation

@ We assume that 6, (7

= £ is x» distributed and is an estimator of
the parameter o, (7) = 6.

@ Reduced variable: \3 = \@g

@ Mathematical expectation:

72
:,@g:

E =

I
sl
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ation measures
Statistics of the Allan variance and the Allan deviation

Increasing the number of edf: the Total variance

Parameter estimation

Allan deviation

@ We assume that 5, (7

= £ is x» distributed and is an estimator of
the parameter o, (7) = 6.

@ Reduced variable: \3 = \@g

e Mathematical expectation: 3 = u=
3 ? 3 ks
27 = = — = —
= V2 2 7 9 4

@ For a given parameter 6p: (&) = /40 ~ 1.1286
¢ is a biased estimator of 0, (overestimated by 13%).

ey
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Chi-square and Equivalent Deg elelyy]

Confidence interval over the All deviation measures
Statistics of the Allan variance and the Allan deviation Parameter estimation

Increasing the number of edf: the Total variance

Parameter estimation

Allan deviation

@ We assume that 5, (7) = ¢ is x» distributed and is an estimator of
the parameter o, (7) = 6.

@ Reduced variable: \3 = \@5

e Mathematical expectation: Y3 =pu= 7/2
3 ? 3 ks
27 = — = — —
= V2 2 7 9 4
@ For a given parameter 6p: (&) = /40 ~ 1.1286
¢ is a biased estimator of 0, (overestimated by 13%).
o For a given measure &: (§) = 4/7& ~ 0.8860y

the measure &, should NOT be used for representing the
parameter ¢ (underestimated by 13 %).
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Chi-square and Equivalent Degrees of Freedom

Confidence interval over the Allan variance/deviation measures
Statistics of the Allan variance and the Allan deviation Parameter estimation

Increasing the number of edf: the Total variance

Parameter estimation

Allan deviation

@ We assume that 5, (7) = ¢ is x» distributed and is an estimator of
the parameter o, (7) = 6.

@ Reduced variable: \3 = \@g

e Mathematical expectation: Y3 =pu= 7/2
¢ _ o7 & _ 7
= V= 5 e 5= 3
@ For a given parameter 6p: (&) = /40 ~ 1.1286
¢ is a biased estimator of 0, (overestimated by 13%).
o For a given measure &: (§) = 4/7& ~ 0.8860y

the measure &, should NOT be used for representing the
parameter ¢ (underestimated by 13 %).

Never fit the curve of Allan deviation, always use the Allan variance! J
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ation measures
Statistics of the Allan variance and the Allan deviation Paramett ion
Increasing the number of edf: the Total variance

Increasing the number of edf: the Total variance

te-10 [ 68 % confidence intervél ——t 1
76131,
3.1e-13 7
4.8e-14
1.2¢-15 7'/2
.2e-18 1 .
fe-tt 1 The longer the time du-
< ration, the larger the
< uncertainty.
o 1
Q fed2p 1
What about very long
term stability ?
1e-13 | 1
L \\,\ L H | Sigma Theta 1.2
10 100 1000 10000 100000

Integration time < [s]

In order to improve estimates for very long term, D. Howe developed:
@ Total variance: UFFC-47(5), 1102-1110 (2000)
@ Theo: Metrologia 43, S322-S331 (2006)
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Prediction of very long term time stability

Outline

e Prediction of very long term time stability
@ Fitting curve over variance measurement
@ Estimation of the noise levels from the fitting curve
@ Extrapolation to very long term time stability
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asurement

Fitting curve over
rom the fitting

Estimatio
(=%
Prediction of very long term time stability

Fitting curve over variance measurement (I)

1e-10 68 % cenﬂde:c?e\zt;y:i\ ——t
4 . 1e-11 ‘;2::“‘5:‘
o3(r) = Z Cidi(r) with &i(r)=7"2 < J
i=0 b
p
. o Z
How to estimate the C; coefficients? J B N —
10 100 l"‘e(;vﬂa?‘?m o 1‘5(1)000 100000
Classical least squares:
N 4 2
Z 6}2,(77) - Z Cioi(1)) is minimum
j=1 i=0

@ not suitable for high dynamic
@ not suitable for positive or null values
@ not suitable for variance curves
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Fitting curve over vari asurement
Estimatio rom the fitting
(=%

Prediction of very long term time stability

Fitting curve over variance measurement (II)

1e-10 68 % cen’ldenc:e\zt;'r;/i\ ——
4 . 1e-11 “2:{}“5:{'2
o2(r) =Y Cidi(r) with o (r)=7"2 J
= b
p
g '”*”4'
How to estimate the C; coefficients? p S
10 100 lme(;g?fm o l‘s(])UOU 100000
Relative least squares:
N ] 4 e
; % 6?,(71) — ; Cioi(1)) is minimum

@ equivalent to a least square fit on log-log plot

@ doesn’t take into account the uncertainties over the Allan
variance measures

@ not suitable for variance curves

F. Vernotte Variance measurements 39



Prediction of very long term time stability

Fitting curve over variance measurement (lll)

le-10 68 % 0d47er‘t§r\/§\.—n—<

o2(r) =3 Cidi(r) with &i(r)=7"2 J
i=0 )"
p
. I,{r""/i/
How to estimate the C; coefficients? J R R S
Weighted relative least squares:
1 4 2
2 L
A ay(1) = > Ci®i(7)) is minimum
,21 SR TN

@ equivalent to a least square fit on log-log plot

@ takes into account the uncertainties over the Allan variance
measures

@ suitable for variance curves
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fntlng curve

Prediction of very long term time stability

Estimation of the noise Ievels from the fitting curve

4
ol(r) = Cidi(r) with ®;(r)=7""?
i=0
2
@ Co72 White or Flicker PM: h,, = 47;7,%00 or hiy= 472 C,
o C17‘71 White FM: h() = 201
. Co
0 ] _
@ Co7" Flicker FM: h_; = 2n(2)
3C;
@ C37 Random Walk FM: h_, = —
272

@ C472 Linear frequency drift: D; = 2C,

Uncertainties Ah, ? See Vernotte et al., IM-42(2), 342-350 (1993)
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Prediction of very long term time stability

Extrapolation to very long term time stability

Some recommendations

Is it possible to extrapolate the fit beyond the ™" “™

last Allan variance measure?

Sometimes yes, but very carefully ! PJ.J '
We ought already to answer to the following ... *
questions. .. s T

Integraticn time ¢ 5]
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Prediction of very long term time stability

Extrapolation to very long term time stability

Some recommendations

1e10 £ 6 % cor

Is it possible to extrapolate the fit beyond the

last Allan variance measure? J
Sometimes yes, but very carefully ! ;/l ‘
We ought already to answer to the following A SO

questions. ... L

Integraticn time ¢ 5]

@ Is the longest term noise or drift asymptote visible on the curve?
Flicker FM for Cesium, random walk FM and/or linear frequency drift otherwise

F. Vernotte Variance measurements 42



Prediction of very long term time stability

Extrapolation to very long term time stability

Some recommendations

1e10 £ 6 % cor

Is it possible to extrapolate the fit beyond the

last Allan variance measure? J
Sometimes yes, but very carefully ! ;/l ‘
We ought already to answer to the following A SO
questions. ... L

Integraticn time ¢ 5]

@ Is the longest term noise or drift asymptote visible on the curve?
Flicker FM for Cesium, random walk FM and/or linear frequency drift otherwise
@ s this asymptote well determined ?
This asymptote must be dominant for at least 2-3 octaves
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ent
the fitting
Extrapolation to very long term time stability

Prediction of very long term time stability

Extrapolation to very long term time stability

Some recommendations

1e10 - 6 % conl

Is it possible to extrapolate the fit beyond the

last Allan variance measure? J
Sometimes yes, but very carefully ! ;/i'

. A
We ought already to answer to the following A SO ]
questions. ... L

Integraticn time ¢ 5]

@ Is the longest term noise or drift asymptote visible on the curve?
Flicker FM for Cesium, random walk FM and/or linear frequency drift otherwise
@ s this asymptote well determined ?
This asymptote must be dominant for at least 2-3 octaves
© Is the curve compatible with a null coefficient for the longest term
noise or drift ?
The bottom uncertainty domains can fit correctly the other asymptotes
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Fitting curve over v e ement
Estimation of the n om the fitting
Extrapolation to very long term time stability

Prediction of very long term time stability

Extrapolation to very long term time stability

Some recommendations

1e10 - 6 % conl

Is it possible to extrapolate the fit beyond the

last Allan variance measure? J
Sometimes yes, but very carefully ! P/i,

We ought already to answer to the following A SO ]
questions. .. R e

Integraticn time ¢ 5]

@ Is the longest term noise or drift asymptote visible on the curve?
Flicker FM for Cesium, random walk FM and/or linear frequency drift otherwise
@ s this asymptote well determined ?
This asymptote must be dominant for at least 2-3 octaves
© Is the curve compatible with a null coefficient for the longest term
noise or drift ?
The bottom uncertainty domains can fit correctly the other asymptotes

If you answered YES to the questions 1 and 2, and NO to the last
question, you may try. ..
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