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Historical notes on the Kalman filter

• Developed in 1960
R. E. Kalman, “A New Approach to Linear Filtering and Prediction 
Problems,” Journal of Basic Engineering, vol. 82, pp. 35-45, 1960

• System + Measurement model: Effective estimation
• Recursive: low computational cost

www.cs.unc.edu/~welch/kalman/media/pdf/Kalman1960.pdf

Boom of applications in the past 50 years

http://www.cs.unc.edu/~welch/kalman/media/pdf/Kalman1960.pdf
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Why is it called a “filter”? (1/2)

To filter
=

to remove frequencies selectively

IN FREQUENCY ANALYSIS

To filter
=

to predict

IN ESTIMATION THEORY
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Why is it called a “filter”? (2/2)

nn0

Filtering

Smoothing Predicting

n+1 ...

Conventional terminology in estimation theory
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The advantages of recursive
estimation (1/6)

Suppose that we want to estimate the temperature 
in this room

Estimation problem
System: this room
State of the system: temperature
True value of the state: x
Measurements: n readings                   from n

thermometers
][,],1[ nzz K
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The advantages of recursive
estimation (2/6)

][][ nvxnz +=

We assume the measurement model

Where v[n] is a Gaussian random variable with
• zero mean [ E: Expected value ]

• standard deviation σ
0]][[ =nvE

]]])[[][[( 2nvEnvE −=σ

)(0,~][ 2σNnv
Normal (or Gaussian) distribution

Compact notation
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The advantages of recursive
estimation (3/6)

x̂[n]We obtain an estimate        of the temperature 
by averaging the n measurements

x[ ] 1 n

ˆ n = ∑ z[k] [Sample mean
n k=1 estimator]

Now we perform a new measurement z[n +1]

We obtain the new estimate

1 n+1

x̂ n +1 =[ ] z[k]
n + ∑1 k=1
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The advantages of recursive
estimation (4/6)

What is the computational cost of this estimate?

[ ] ∑
=

=
n

k
kz

n
nx

1
][1ˆ

• The number of operations increases with n
• And we have to store an increasing (diverging) 

number of measurements...
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The advantages of recursive
estimation (5/6)
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We observe that we can rewrite the estimate as
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The advantages of recursive
estimation (6/6)

[ ] [ ] ]1[
1

1ˆ1ˆ +
+

+=+ nz
n

nxnx

Recursive estimate

• The computational cost is fixed!
• And we have to store the previous estimate only

What are the performances of this estimator?
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Performances of an estimator (1/2)

1. BIAS [Mean value of the estimation error]

xxEB −= ]ˆ[

• B = 0: Unbiased estimator
• B ≠ 0: Biased estimator

2. VARIANCE

]])[ˆ[( 22 xExE −=σ
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×
×
×
××
×××

Unbiased
Low variance

xxE =]ˆ[

0=B

Performances of an estimator (2/2)

××××××
× ×

Biased
Low variance

xxE ≠]ˆ[

0≠B

×

×
×

×
×

×
×
×

Unbiased
High variance

xxE =]ˆ[

0=B
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Performances of the sample mean estimator (1/2)

1. BIAS
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Unbiased estimator
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Performances of the sample mean estimator (2/2)

2. VARIANCE

n

xExEx
2

22
ˆ ]])[ˆ[(

σ

σ

=

−=

(Independent measurements)

σσ x̂ = n
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Summarizing... (1/2)
Sample mean estimator

[ ] [ ] ]1[
1

1ˆ1ˆ +
+

+=+ nz
n

nxnx

• Linear
• Recursive
• Optimal: minimum variance of the estimate

System model Measurement model

x z[n] = x + v[n]

(constant)
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Summarizing... (2/2)

Also the Kalman filter is

linear, recursive, and optimal

But the system model is not a constant!

System model

(dynamical system)

Measurement model

][][][ nvnxHnz +=]1[]1[]1[][ −+−+−Φ= nnbnxnx η
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System model (1/10)

Example: a boat on the ocean

u

xu

yu

)(tv

)(tvx

)(tvy

)(tx

)(ty wind force
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System model (2/10)
Balance of forces: x direction

kvx (t) m ux

ξ x (t)

ux Wind force

kvx (t) Friction

ξ x (t) Random force due to the waves
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System model (3/10)

kvx (t) m ux ξ x (t)

f x (t)

f x (t) = max (t) [Newton’s law]

ux +ξ x (t) − kvx (t) = max (t) [Balance of forces]
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System model (4/10)

ux +ξ x (t) − kvx (t) = max (t)

We take m = 1
and we note that

ax (t) = v&x (t)

substituting, we have

v&x + kvx (t) = ux +ξ x (t)
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System model (5/10)
v&x + kvx (t) = ux +ξ x (t)

We note that

v = &x (t) x(t)

Substituting

&x&(t) + k&x(t) = ux +ξ x (t)
&y&(t) + k&y(t) = uy +ξ y (t)

Identical equation for the y axis



22

System model (6/10)

Summarizing

&x&(t) + k&x(t) = ux +ξ x (t)
&y&(t) + k&y(t) = uy +ξ y (t)

Initial conditions

x(0) Initial x position
&x(0) Initial x velocity

y(0) Initial y position
&y(0) Initial y velocity
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System model (7/10)

&x&(t) + k&x(t) = ux +ξ x (t)Change of variables
&y&(t) + k&y(t) = u

= y +ξ y (t)
x1(t) x(t)
x (t) = &2 x(t)
x3 (t) = y(t) &x1(t) = x2 (t)
x t = &4 ( ) y(t) &x2 (t) = −kx2 (t) + ux + xξ (t)

&x3 (t) = x4 (t)
&x4 (t) = −kx4 (t) + uy +ξ y (t)
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System model (8/10)
&x1(t) = x2 (t)
&x2 (t) = −kx2 (t) + ux + xξ (t)
&x3 (t) = x4 (t)
&x4 (t) = −kx4 (t) + uy +ξ y (t)

&x(t) = F x(t) + Bu(t)+ξ
x
(t)

⎡x1(t) ⎡0 1 0 0 ⎤ ⎡ 0 ⎤ ⎡ 1ξ ⎤⎤ (t)
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
x2 (t) 0 − k 0 0 u ξ (t)⎢ ⎥x(t ⎥) = ⎢ ⎥ F = ⎢ Bu(t) ⎢= x ⎥ ξ (t) = 2

⎢x (t)⎥ ⎢0 0 0 1 ⎥ ⎢ 0 ⎥ ⎢ 3ξ (t)⎥
⎢ ⎥⎢

3
⎥ ⎢ ⎥ ⎢ ⎥

⎣x t ⎦ ⎣0 0 0 −4 ( ) k ξ⎦ ⎣⎢uy ⎥ ⎣ (t)⎦ 4 ⎦
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System model (9/10)
&x(t) = F x(t) + Bu(t)+ξ

x
(t)

x[n] = Φx[n −1]+ b[n −1]+η[n −1]

Where
x[n] = x(nTs )

Φ = eF Ts [Transition matrix]

η[n −1] ~ N (0,Q) [Model noise]
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System model (10/10)

Key point: Physical systems can be modeled as

u

xu

yu

)(tv

)(tx

)(ty wind force

]1[]1[]1[][ −+−+−Φ= nnbnxnx η
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Measurement model (1/2)

Measurements performed by a GPS receiver

zx[n] = zx (nTs )
zy[n] = zy (nTs )

u

xu

yu

)(tv

)(tx

wind force
)(ty

)(tzx

)(tyz
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Measurement model (2/2)

Measurement model

z[n] = Hx[n]+ v[n]

where

⎡zx[n]⎤ ⎡1 0 0 0⎤z[n] = ⎢ ⎥ H=zy[n] ⎢ ⎥
⎣ ⎦ ⎣0 0 1 0⎦

v[n] ~ N (0, R) Measurement noise
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Estimation problem (1/2)
How do we estimate the state of the boat?

What do we know:
1. Measurements z[n]
2. Physics of the boat System model

]1[ −nz

][nz
][ˆ nx

]1[ˆ −nx
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Estimation problem (2/2)
We seek a linear, recursive, optimal estimate of 

the form

x̂[n] = L( x̂[n −1], z[n])

where
x[n] = Φx[n −1]+ b[n −1]+η[n −1] [System model]
z[n] = Hx[n]+ v[n] [Measurement model]

The estimate must be unbiased
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The Kalman filter: Derivation (1/7)

We change notation slightly

]1[ −nz

][nz

][ˆ nx+

]1[ˆ −+ nx
][ˆ nx−

Estimate after using
measurement

][nz
Estimate before using

measurement

][nz

=][ˆ nx
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The Kalman filter: Derivation (2/7)
z[n]

x̂+[n] Estimation errors
e+[n] = x̂+

+ [n]− x[n]e [n]
x[n] e−[n] = x̂−[n]− x[n]

e−[n]
x̂−[n]

Linear, recursive estimate
x̂+[n] = K '[n]x̂−[n]+ K[n]z[n]

FindUnbiased
[n

E e+ K ]
[ [n]] = 0

K '[n]
Optimal

minimize E[|| e+[n] ||] e+[n][Average length of          ]
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The Kalman filter: Derivation (3/7)

Constraint 1: Unbiased estimate

E[e+[n]] = 0

K '[n] = I −K[n]H

Substituting, we obtain the state estimate update

x̂+[n] = (I − K[n]H ) x̂−[n]+ K[n]z[n]

ê+[n] = (I −K[n]H )ê−[n]+ K[n]v[n]

P+[n] = (I − K[n]H )P−[n](I − K[n]H )+ K[n]RK[n]T

Error covariance matrix: P+[n] = E[e+[n]e+[n]T ]
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The Kalman filter: Derivation (4/7)

Constraint 2: Optimal estimate

|| e+[n] ||= e + 2 2
1 [n] +K+ e +

M [n]

Equivalently, we consider

|| e+[n] ||2= e +[n]2 + e +
K+ [n]2

1 M

We seek K[n] which minimizes

E[|| e+[n] ||2 ] = E[e +
1 [n]2 + +

K+ e ]2
M [n ]

Since the expected value E is linear

E[|| e+[n] ||2 ] = E[e +[n]2 ]+ + E[e +
K 2

1 M [n] ]

this is a known quantity...
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The Kalman filter: Derivation (5/7)
Error covariance matrix

P+[n] = E[e+[n]e+[n]T ]

⎡⎡ e +
1 [n] ⎤ ⎤

⎢⎢ ⎥ ⎥
= E⎢⎢ M ⎥ e +

1 [n] L e +
M [n[ ] ⎥

⎢⎢e +[n]⎥ ⎥
⎣⎣ M ⎦ ⎦

⎡ E[e +
1 [n]2 ] + +

L E[e1 [n]e n]]⎤
⎢ M [

⎥
= ⎢ M O M ⎥
⎢E[e +[n]e + + 2 ⎥
⎣ 1 M [n]] L E[eM [n] ] ⎦

The sum of the entries on the diagonal is

trace P+[n] = E[e +[n]2
1 ]+KE[e +

M [n]2 ]

Therefore
E[|| e+[n] ||2 ] = trace P+[n]

]
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The Kalman filter: Derivation (6/7)
We look for K[n] which minimizes

trace P+[n]

Minimum problemMinimum problem

∂ trace P+[n]
= 0

∂K[n]

The solution is

K[n] = P−[n]H T (HP−[n]H T + R)−1

One more thing: how do we extrapolate the 
estimate at time n-1 to the estimate at time n? 
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The Kalman filter: Derivation (7/7)

State estimate extrapolation
x̂−[n] = Φ x̂+[n −1]+ b[n −1] Unbiased estimate

P−[n] = ΦP+[n −1]ΦT +Q

][nz

][ˆ nx+

][ˆ nx−

][nx
][ne+

][ne−

]1[ˆ −− nx
]1[ −nx
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The Kalman filter: Timing diagram

H , R, z[n −1] H , R, z[n]

x̂−[n −1] x̂+[n −1] ˆ [n]Φ x− x̂+[n],Q
P−[n −1] P+[n −1] P−[n] P+[n]

n −1 n
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The Kalman filter: Summary of equations
System model

x[n] = Φx[n −1]+ b[n −1]+η[n −1] η[n −1] ~ N (0,Q)
Measurement model

z[n] = Hx[n]+ v[n] v[n] ~ N (0, R)

Initial conditions
x̂+[0] = E[x[0]]
P+[0] = E[( x̂[0]− x[0])(x̂[0]− x[0])T ]

State estimate extrapolation
x̂−[n] = Φ x̂+[n −1]

P−[n] = ΦP+[n −1]ΦT +Q
State estimate update

x̂+[n] = (I − K[n]H ) x̂−[n]+ K[n]z[n]
+ = − − − + TnRKnKHnKInPHnKInP ][][)][]([)][(][
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The atomic clock signal (1/3)
Signal generated by an ideal clock (oscillator)

u(t) =U0 sin(2πν 0t)

We define the ideal clock reading
h0 (t) = t

u(t) =U0 sin(2πν 0h0 (t))

Signal generated by a real clock (oscillator)

u(t) = (U0 +ε (t))sin(2πν 0t +ϕ(t))

amplitude fluctuations phase fluctuations
[negligible]
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The atomic clock signal (2/3)

We rewrite the clock signal as
u(t) =U0 sin(2πν 0h(t))

where h(t) is the clock reading
1h(t) = t + ϕ(t)

2πν 0

substituting
h(t) = h0 (t) + x(t)

where x(t) is the time deviation
1x(t) = ϕ(t)

2πν 0
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The atomic clock signal (3/3)

Instantaneous frequency of the oscillation u(t)
1 dϕ(t)ν (t) =ν 0 + 2π dt

Normalized frequency deviation
ν (t) −νy(t) = 0

ν 0

It is
dx(t)y(t) =

dt

x(t) and y(t) have a noise-like nature
• they are referred to as clock noise
• they can be modeled as the sum of 1/fα noise components
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The two-state model of clock noise (1/9)

Similarly to the boat, clock noise can be modeled with 
a random dynamical system

Model for clock noise (experimental evidence)

 walkrandom  noise white)( +=ty
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The two-state model of clock noise (2/9)

y(t) =ξ1(t) +W2 (t)

White noise Random Walk
White Frequency Noise Random Walk Frequency Noise 

(WFN) (RWFN)
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The two-state model of clock noise (3/9)

White Gaussian noise )(1 tξ
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The two-state model of clock noise (4/9)

Wiener process )(2 tW

Wiener process ≡ Random walk
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The two-state model of clock noise (5/9)

The Wiener process is defined as
dW2 (t)

= 2ξ (t)
dt

W2(0) = 0
white Gaussian noise

Therefore

∫
t

W2(t) = 2ξ (t' )dt'
0

We derive the two-state model in matrix form
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The two-state model of clock noise (6/9)

y(t) =ξ1(t) +W2 (t)

y t = + ∫
t

( ) 1ξ (t) ξ2 (t ' ) dt '
0

The phase deviation is given by

x t = ∫
t

( ) y(t ' ) dt '
0

Substituting
tt

x(t) = ∫ 1ξ (t' )dt' + (t' )dt
0

∫∫ 2ξ '
0

We set x1(t) = x(t)
t

x1(t) = ∫
t

1ξ (t ' ) dt '+ ∫∫ξ2 (t ' )dt '
0 0
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The two-state model of clock noise (7/9)

t

x
t

1(t) = ∫ 1ξ (t ' ) dt '+ 2 (t ' )dt '
0

∫∫ξ
0

We evaluate the derivative of x1(t) (= y(t) )

t
&x1(t) = 1ξ (t) + ∫ 2ξ (t' )dt'

0

x2 (t)

&x1(t) = x2 (t)+ξ1(t)

We evaluate the derivative of x2 (t)

&x2 (t) = ξ2 (t)
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The two-state model of clock noise (8/9)
Scalar equations

&x1(t) = x2 (t) +ξ1(t)
&x2(t) = 2ξ (t)

Matrix equation

d ⎡x1(t)⎤ ⎡0 1⎤⎡x ( )⎤ ⎡ξ ( )⎤
⎢ ⎥ =

1 t 1 t
⎢ ⎥⎢ ⎥ + ⎢ ⎥dt ⎣x2 (t)⎦ ⎣0 0⎦⎣x2 (t)⎦ ⎣ 2ξ (t)⎦

Model for clock noise

&x(t) = F x(t) +ξ (t)

⎡x1(t)⎤ ⎡0 1⎤ ⎡ 1ξ (t)⎤
x(t) = ⎢ ⎥ F = ⎢ ⎥ ξ (t) = ⎢ ⎥

⎣x2 (t)⎦ ⎣0 0⎦ ⎣ξ2 (t)⎦
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The two-state model of clock noise (9/9)

Continuous-time model
&x(t) = F x(t) +ξ (t)

Discrete-time model

x[n] = Φx[n −1]+η[n −1]

⎡1 T ⎤
Φ = s η[n −1] ~ N (0,Q)

⎢ ⎥
⎣0 1 ⎦

Exact transition matrix

Covariance matrix of 
clock noise
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The Kalman filter for time scales (1/2)

The Kalman filter is an ideal tool for defining an 
atomic time scale

1. The model of the clock noise is a linear 
dynamical system

2. The measurement equation is linear
3. The time scale has to be generated in real time 

(the computational cost must be low)
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The Kalman filter for time scales (2/2)

The GPS composite clock algorithm generates GPS time by

1. Processing the measurements from N clocks
2. Predicting the reading of each clock
3. Defining the implicit ensemble mean (IEM)

GPS time is continually steered versus UTC(USNO)
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The GPS clock model (1/8)

• Cesium clocks are modeled by the two-state model
• Rubidium clocks need a third state

We review the GPS composite clock by following Brown’s 
paper

K. R. Brown, “The theory of the GPS composite clock,” ION GPS-91, 
September 1991, Albuquerque, USA, pp. 223-241
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The GPS clock model (2/8)
The algorithm is given for N clocks:
We consider the case N=3

We write a random differential equation for the clocks 
in the ensemble

&h(t) = Fh(t)+ξ (t)

where
⎡h1(t)⎤
⎢ ⎥h(t) = h ( )⎢ 2 t ⎥
⎢⎣h3(t)⎥⎦

and ⎡h (t)⎤
h1(t) = 1,1

⎢ ⎥
⎣h1,2 (t)⎦
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The GPS clock model (3/8)

The matrix F is given by

⎡F1 0 0 ⎤
⎢ ⎥F = 0 F⎢ 2 0 ⎥
⎢ 0 F3⎥⎣ 0 ⎦

All the clocks are identical and

⎡0 1⎤
F1 = F2 = F3 = ⎢ ⎥

⎣0 0⎦
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The GPS clock model (4/8)

ξ (t)Every element of         is a white Gaussian noise

⎡ξ ( )⎤
⎢ 1

t
⎥

ξ (t) = ⎢ξ 2
(t)⎥

⎢ξ (t)⎥⎣ 3 ⎦
where

⎡ξ )⎤
ξ ( ) = 1,1(t

1 t ⎢ ⎥
⎣ 1ξ ,2 (t)⎦

with autocorrelation matrix

rξ1
(t1, t2 ) = E[ ( )ξ T

1ξ t1 1 (t2 )] =Q1δ (t1 − t2 )

⎡q ⎤
Q1 =

1,1 0
⎢ ⎥
⎣ 0 q1,2 ⎦
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The GPS clock model (5/8)

We can write
h(t) = h0 (t)+ x(t)

where
h0 (t) = H Rh0 (t)

HR is a replication matrix

⎡I2 ⎤
⎢ ⎥H R = I⎢ 2 ⎥
⎢I2 ⎥⎣ ⎦

where
⎡1 0⎤

I2 = ⎢ ⎥
⎣0 1⎦
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The GPS clock model (6/8)

Some simple algebra shows that

&x(t) = F x(t)+ξ (t)

We recall the equation for the clock readings

&h(t) = Fh(t)+ξ (t)

Therefore, the same random differential equation holds 
for the clock readings and the time deviations
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The GPS clock model (7/8)

In discrete time
h[n] = Φh[n −1]+η[n −1]

where, as usual 
h[n] = h(nTs )

It is ⎡ 1φ 0 0 ⎤
⎢ ⎥Φ = 0 2φ 0⎢ ⎥
⎢ ⎥⎣0 0 3φ ⎦

where
⎡1 T ⎤

1φ = s
⎢ ⎥
⎣0 1 ⎦
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The GPS clock model (8/8)

η[n −1] is a vector of Gaussian random variables

⎡η [n −1]⎤ ⎡C ⎤
⎢

η 0 0
⎢ 1 ⎥ 1 ⎥

η[n −1] = ⎢η ⎢ C
2
[n −1] =⎥ Cη 0 η2

0 ⎥
⎢η

3
[n−1]⎥ ⎢

⎣ ⎦ ⎣ 0 0 C ⎥
η3 ⎦

It is
η1[n −1] ~ N (0,C

1η
)

where
⎡ q T 3 q 2 ⎤
⎢q T + 1,2 s 1,2Ts

1,1 s ⎥
C 3 2 ⎥

1η
= ⎢
⎢ q1,2T

2
s ⎥

⎢ q1,2Ts ⎥⎣ 2 ⎦
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The GPS clock measurement model (1/2)

The input of the Kalman filter are the N-1 time differences 
between the N clocks, corrupted by measurement noise

z1[n] = h1,1[n]− h2,1[n]+ v1[n]
z2[n] = h2,1[n]− h3,1[n]+ v2[n]

We can write these measurements as

z[n] = H h[n]+ v[n]

where
⎡ z1[n]⎤ ⎡v1[n]⎤

z[n] = ⎢ ⎥ v[n] = ⎢ ⎥
⎣z2[n]⎦ ⎣v2[n]⎦

v[n] ~ N (0, R) Covariance of the
measurement noise
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The GPS clock measurement model (2/2)

The matrix H which performs the time differences is defined as

⎡1 0 −1 0 0 0⎤
H = ⎢ ⎥

⎣0 0 1 0 −1 0⎦

With N=3 clocks we have N-1=2 measurements only...

One measurement is missing!
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The GPS Implicit Ensemble Mean (1/15)

The Kalman filter uses the system model and the measurements 
x̂[n]to obtain an estimate        of the clock time deviations, 

along with its covariance Cx̂[n]

Then the IEM is built from the estimated time deviations

We simulate N=3 clocks by using

⎡ 1 0 ⎤ ⎡1 0 ⎤ ⎡4 0 ⎤
Q1 = ⎢

4
−2 ⎥, Q2 = ⎢ −2 ⎥, Q3 = ⎢ −2 ⎥

⎣0 10 ⎦ ⎣0 10 ⎦ ⎣0 10 ⎦

Ts =1s
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The GPS Implicit Ensemble Mean (2/15)

Simulated and estimated clock time deviations

0 10 20 30 40 50 60 70 80 90

−200

−150

−100

−50

0

50

100

150

Time (s)

P
ha

se
 d

ev
ia

tio
n 

(s
)



66

The GPS Implicit Ensemble Mean (3/15)

Growth of the covariance matrix
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The GPS Implicit Ensemble Mean (4/15)

Simulated and estimated clock differences
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The GPS Implicit Ensemble Mean (5/15)
The IEM is defined as

h0[n] =WIEM[n]Ω[n]

where
⎡h0 ⎤

= ,1[n]h0[n] ⎢ ⎥
⎣h0,2[n]⎦

Ω[n]and         is the vector of corrected clocks

Ω[n] = h[n]− x̂[n]

where
⎡ 1ω [n]⎤

⎡ω⎢ ⎥ [n]⎤
Ω[n] = ω 2[n] , [ ] 1,1

⎢ 1ω n =⎥ ⎢ ⎥
⎣ [ ⎦[ 1ω ,2 n]

⎢⎣ω3 n]⎥⎦
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The GPS Implicit Ensemble Mean (6/15)
The IEM is a weighted average of the corrected clocks
The weights are given by

W [n] = [H TC −1[ ] ]−1 T 1
IEM R x̂ n H H R C −

R x̂ [n]

The deviation of the IEM from the ideal time is given by

TA[n] = h0[n]− h0[n]

where
⎡TA [ ]⎤

[ ] = 1 n
TA n ⎢ ⎥

⎣TA2[n]⎦
It can be shown that

TA[n] =WIEM[n][x[n]− x̂[n]]

Clock residuals E[n]
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The GPS Implicit Ensemble Mean (7/15)

Clock residuals and implicit ensemble mean
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The GPS Implicit Ensemble Mean (8/15)

Growth of the covariance of the IEM
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Also the IEM diverges, as can be seen from its covariance matrix

CTA[n] = [H T −1 1
ˆ [ ] ]−R Cx n H R
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The GPS Implicit Ensemble Mean (9/15)

Covariance of the clock estimates
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The IEM diverges slower than the clock estimates
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Covariance of the IEM
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The GPS Implicit Ensemble Mean (10/15)
The clock residuals remain close to the IEM

Γ[n] = E[n]−TA[n]

Deviation of the clock residuals from the IEM

C [n] =C [n]−H [H T
Γ C −1 1

x̂ R R x̂ [n]HR ]− H T
R

Covariance matrix of the deviation of the clock 
residuals from the IEM
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The GPS Implicit Ensemble Mean (11/15)

Covariance of the difference between the clock 
residuals and the IEM
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The GPS Implicit Ensemble Mean (12/15)

The clock residuals remain close to the IEM

Every clock residual is a good representation of the IEM

GPS uses the clock residuals rather than the IEM
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The GPS Implicit Ensemble Mean (13/15)

Note: The IEM is not bounded by the clock residuals
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The reason is that the clock weights can be negative
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The GPS Implicit Ensemble Mean (14/15)

Eventually, the divergence of the covariance matrix results 
in a numeric overflow

We shrink the covariance matrix

Cx̂ '[n] =C − − −
ˆ n T T
x[ ] H 1 1

R[HR Cx̂ [n]H R ] H R

This formula provides maximal reduction
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The GPS Implicit Ensemble Mean (15/15)

Control of covariance
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Conclusions

• The Kalman filter estimates the current state of a 
dynamical system from noisy measurements

• It is linear, unbiased, optimal, and recursive
• The atomic clock noise can be modeled by a dynamical 

system
• The Kalman filter is used in several applications in 

atomic timing
• GPS time is generated by a Kalman filter: it is the GPS 

composite clock algorithm
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