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What Is A Kalman 
Filter?
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Problem

 Develop an algorithm to process the data

and form an estimate of position Use all 

relevant information.
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Problem (cont.)

 Kalman filter based upon given model(s)

– Measurement process model

– System dynamics model

– Initial condition model
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Alternative Problems, Issues

 What is the required radar accuracy to achieve a 

prescribed accuracy in the final estimate of

 What are the implications of having range rate 

information available in addition to range data?

 How about samples every 0.05 sec, 0.01 sec., etc.?

 How sensitive is the algorithm to deviations from 

assumed model?

– Suppose       is not constant

– Suppose measurement errors not ―independent‖

 Given the initial conditions, how accurately could one 

estimate                 without any data?

).6( 0 tP
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What is a Kalman Filter?

 Algorithm for generating estimates of the state of a 

system based upon

– A mathematical model

 System states are governed by linear differential or difference equations 

driven by white noise 

 Measurements are linear functions of the states + white measurement 

noise

– An initial estimate

 Initial estimates (can be very poor) are required.  Also level of uncertainty 

needs specification

– A set of measurements

 Data from real hardware (sensors) such as GNSS

– Pseudoranges

– Delta Pseudoranges
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RV Example

 Mathematical MODEL

 Initial estimate

 Measurements
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Physical 
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System state Data from 

physical 

system
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Initial estimate
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Kalman Filtering Problem
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Attributes of Kalman Filter

Kalman filter is ―optimal‖— if physical world and mathematical 

model coincide.  This is never the case.  Dealing with model 

disparities is major task of Kalman filter designer.

Kalman filter is ―recursive‖— estimates are updated upon receipt 

of each measurement.  No need to save past data.

Kalman filter creates its own error analysis— the ―1s‖ estimation 

errors are generated as part of the algorithm.  But the values 

are only as good as the model.

Kalman filters can create numerical difficulties— precision, 

memory, speed.

Kalman filters are easily reconfigured to handle wild data points 

and model changes.

Kalman filter model is linear— real world is always non-linear, to 

some extent.

Kalman filter operates in vector/matrix format— concepts and 

operations are independent of number of states.







+

—



+
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Example: Curve Fitting 

 Given

– Three data points 

– A relationship between t and  Z

of the form

– Find                   in terms of the given data.

 Solution

 Solution amounts to solving 3 equations for 3 unknowns

Since Eq. (2) is satisfied, the       vs    curve determined by Eqs (1) and (3) 

is guaranteed to pass through the three data points
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Example:  Curve Fitting (cont.)

 Given

– Two data points

– A relationship between  t and  Z of the 

form 

– Find                     in terms of the given data.

 Solution

 Procedure:  choose an             or     arbitrary and solve 

Eqs (1), (2), or (3) for remaining two unknowns.

Z 21 tt 0 0 0

– Result:  An infinite number of 

solutions exist.  Some 

possibilities are
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Example:  Curve Fitting (cont.)

 Given

– Five data points

– A relationship between     and        of 

the form

– Find               in terms of the given data

 Solution

Approach 1:  Use only the first 3 equations and solve for           as in     

first part of this example;  ignore the last 2 equations..

Result: curve will pass through first 3 data points.  May not 

even come close to curve 1 

Approach 2:  Try drawing a ―best fit‖ to the data.  See curve 2.
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Example:  Curve Fitting (cont.)

 Denote a chosen set of             values by               .  

Also let

– We propose to choose the               according to the criteria that 

the fit determined is best in the ―least squares‖ sense.  

Specifically, we minimize      where

For this example

 Procedure

– The above leads to
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Example: Curve Fitting Summary

 Given

– Observation vector 

– Vector of parameters to be determined

– Assumed model of the form  

– Find     X

 Case 1:  Underdetermined

– Infinite number of solutions exist

– That is, not enough information (equations) to uniquely specify all elements of  X

 Case 2:  Exactly determined

– Unique solution for  X exists provided

 Case 3:  Over determined

– Cannot guarantee a perfect fit to the data

– A ―best fit‖ in the least squares sense can be determined to be

– This solution guarantees                                                minimum

– This case is of the most interest. 

15
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Example: Curve Fitting Summary

 Curve-fitting least squares fit

1.  Results predicated upon assumed model  Z = HX

Model validity is always a problem

2.  All residuals               are weighted equally.  No provisions for 

―de-weighting‖ some points.

3.  No information regarding ―a priori‖ knowledge of parameters 

used.

4.  Batch processing is implied by 

5.  Criteria is one of fitting data; not minimizing estimation error,           

16
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Example—The Kalman Filter

Curve-fitting least squares fit  

 The Kalman filter

– Kalman filtering brings into consideration  2, 3, 4, 5.

– Modeling remains a problem.

– The least squares curve fit and the Kalman filter yield the same 

estimates when 

 Initial uncertainty in   X is large.

 All observations are of equal quality.

 System is overdetermined or exactly determined.

– The Kalman filter is recursive.

– The Kalman filter accommodates a dynamical model for X.

17
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Error Models for 
Random Processes 

and Sequences
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Exponentially Correlated Noise

 A process x(t) is called exponentially correlated if it has 

zero mean and an autocorrelation function of the form

– where          ―correlation time.‖

– This process is stationary and has a power spectral density 

given by

– and                 are sketched below
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White Noise

 3   
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 Define white noise the limit of an exponential process 

as

– Correlation time 

– constant

– In the limit

– Comments

 White noise variance

 Parameter characterizing white noise             is not dimensionally the same 

as  s2

 True white noise does not exist in nature due to infinite variance
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White Noise

 Question:  If white noise does not exist in nature, then 

what good is it ?

 Answer:  

1. In many cases, it can be used to approximate the real world.

2. Numerous additional processes can be generated as

―Solutions to linear differential equations Two ways

driven by white noise‖ of saying

―Responses to linear shaping filters the same

driven by white noise‖ thing.

 We will make extensive use of item (2) throughout the 

remainder of this section.  

 Brief examples of (1) and (2) follow.
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White Noise

 Example:  Use of white noise as a simplifying 

approximation  

– Given:

– Find:

approximating Approximation works because

with for low

for high
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Example

 tw tx S

1

 Generating a random walk as integral of white noise
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If   w(t) is a white noise process 

with parameter 

Then x (t) is a random walk 

process with variance growth 

rate, i.e., 

• We have generated a random 

walk process using white noise.

• We will make extensive use 

of this concept.

2
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Random Walk

 A process x(t) is a random walk if it has a zero mean 

and an autocorrelation function of the form

– For                 , we have                                             .

– Note

 The variance of x(t) grows linearly with time

 x(t) is non-stationary

– Caution

 The parameter       has units of        per unit time.

 is not a variance, but a variance growth rate.
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ttt  21      tttxE x
222 ss 

2s 2x
2s

24



Kalman Filtering Consultant Associates © 2011   s 2
ww    2
ww s  wxx wx s

1

 
  

sG

 

 
22

2

2

2



s


s








e
e

ee e
     

22

2

2

2

22

2

21





s


s













w

w

wx jG



s
s

1
;

2

2
2  time corr.

w
x

generated as solution Shaping Filter 

to differential equation Representation

driven by white noise

Remember for exponentially 

correlated noise

 PSD for   x

Hence,  x (t ) is exponentially 

correlated with

Example

 Generating an exponentially correlated process as the 

solution to a differential equation driven by white noise
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Previous Result 

 Reworded slightly:

– If we wish          to be an exponentially correlated process with 

given variance             and correlation time, then           will 

have these properties.

– A steady state solution to

– where            is a white noise process with

2
xs

 tw

      ss 22 2;2 xwxw 
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Error Modeling

   

  2
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

w

w

PSD AUTOCORRELATION FUNCTION

27



Kalman Filtering Consultant Associates © 2011

GNSS Clock Modeling and Corrections

 On board clock errors

– Space vehicle (SV) time

 Timing of the signal transmission from each satellite

 Directly controlled by its own atomic clock with NO corrections applied

– GPS time

 Highly accurate

 However, errors can be large enough to require corrections

 Difficult to directly synchronize clocks in all the satellites

 Instead, clocks allowed some degree of relative drift estimated by ground 

station observations and used to generate clock correction data in GPS 

navigation message

 SV time is corrected using this data, and result is called ―GPS time‖
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(computed)

_ _
+

t
+

(From Subframe 1)

t tGDt SV SV LSV 1

Time Calculations (GPS book, p. 64)

:

Differential bias provided 
on subframe 1

GD,

(Time from pseudorange time tagged)

 

  GD
1

1

:





SVLSV

LSVSV

tt

ttt

   OCLfOCff ttattaa 
1

210

(3.8)   
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(3.10)

(3.11)
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GNSS Receiver Clock Modeling

 Receiver clocks

– Relatively inexpensive, stable over periods of time (0-10S)

– Works well for GNSS receiver applications IF receiver can use 

the timing information from hyperaccurate GNSS satellite 

clocks to maintain required long term stability and accuracy of 

receiver clocks

 Clock phase and frequency tracking

– Most common implementation

 Uses 2-state random process model

 Keeps the receiver clock synchronized to GNSS satellite clocks

 Kalman filter with two state variables 
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Receiver Crystal Clock Modeling

 Two errors due to clock

– Clock bias

– Clock drift

 Continuous domain
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– Need PSD (power spectral density of W1, W2 )

– Discretize with back difference

sampling time        sec.

Clock Model (cont.)
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Process Noise Covariance for Receiver Clocks

 Clock process noise covariances (bias and drift)

 From Allan variance plot with asymptotes for a typical crystal oscillator

 Reference page 472, KF book
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Process Noise Covariance for Receiver Clocks (cont.)

 Frequency drift variance

– Value depends primarily on 

 Quality of quartz crystals

 Its temperature control

 Stability of its associated control electronics

 Phase noise variance

– Value depends more on the electronics

 c = speed of light = 3 x 108 m/s
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GNSS Receiver Clock Modeling

 Notes

– Zero mean white noise processes          and           are 

uncorrelated

– FLICKER noise

 This model is a short term approximation of what is called ―flicker‖ noise in 

clocks

 Power Spectral Density (PSD) of clicker noise as a function of frequency 

falls off at 1/f .

 Behavior cannot be modeled exactly by linear stochastic differential 

equations

– Real clock drift characteristics

 Studied extensively

 ALLAN variance plots depict the amount of RMS drift that occurs over 

specified period 

 Reference:  J. A. Barnes, ―Models for the Interpretation of Frequency 

Stability Measurement,‖ NBS Tech. Note 683, Boulder CO, August 1976
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Clock Estimation

 Clock estimation uncertainties vs. clock stability

– For stationary receiver with good satellite geometries

– Under such ideal conditions, clock stability does not severely 

compromise location uncertainty

– But it does compromise clock synchronization (frequency 

tracking)

– Tends to corrupt the navigation solution

– See plot 
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GNSS Measurement 
Models
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General Measurement Models 

 Let measurement model be non-linear

 Expand this L.H.S. in Taylor series about some
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General Measurement Models

 Equation becomes
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GNSS Measurement Models

– Measured pseudorange

where

Expand                         about

in Taylor series
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GNSS Observation Equation

 Linearization 

 x  X  X 0

 y  Y Y0 where

 z  Z  Z0 i
r (xi )


 2 2 2

(xi  X)  (yiY)  (zi Z)


 z  X ,Y ,Z r X 0 ,Y0 ,Z0 
r x  

X

                                                                                                         X0,YX00,Z,Y00 ,Z0  
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Linearization (cont.)
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Linearization (cont.)

position errors, Cb=clock bias

Cd= clock drift 


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System Dynamics 
Models
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Modeling (cont.)
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8 States - Slow Dynamics 

 Discrete Process Model--Car or boat
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Linearized Observation Model

 For 8 states
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Physical 

system

Meas.  

process

Kalman filter, math

models of

• Physical system

• Measurement process
Noise 

(error sources)

System state Data from 

physical 

system

Noise 

(error sources)

Initial estimate

Kalman Filtering Problem

 Top level sketch 
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Discrete Linear Kalman Estimator

System model:

Measurement model: (white)

Initial conditions:

Other assumptions: for all K, j

State estimate extrapolation:

Error covariance extrapolation:

State estimate update:

Error covariance update:

Kalman gain matrix:
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DELAY

+)W

white

Block Diagram

 System, measurement models & discrete Kalman filter  

(one step prediction)
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Representative Sequence of Values of Filter 
Variables in Discrete Time
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Block Diagram (cont.)

 Comments

– It is important to notice that       and                      are 

independent of observations (measurements)

– There are simpler forms of       and     

– Procedure of computations

1) Compute              with                                   (given)

2) Compute              with                                  (known)

3) Compute              with                                   (known)

4) Compute              with                                   (known)

    kk PP ,kK

kK  kP

 kP   111 ,,   kkk QP

kK   kkk RHP ,,

    kkk PHK ,, kP

 kx̂     kkk zKx ,,ˆ
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Continuous Kalman Filter

 Can be derived by using the orthogonality principal

– System model:

– Measurement model:

– Initial conditions:

– Other assumptions: exists

– State Estimate:

 Error covariance propagation

 Kalman gain matrix
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Kalman Filter Data Flow
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Kalman Filter Examples

 Let the system dynamics and observations be given by 

the following equations:

 The objective is to find     and the steady state covariance matrix      . 

One can use the equations on page 23 with
3x̂ P

2,1,1  RQH
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Example (cont.)

 For which
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     
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13

22
111

ˆ  kkkk xKPPk

Example (conc.)
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 Let

 Following is a table for the various values of the Kalman 

filter
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Convergence of Kalman Filter

 An optimal filter converges if LIM (Trace P) = 0

 Example of typical behavior:

For an optimal filter, convergence or lack of convergence 

is correctly and fully defined by P (t)
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Convergence (cont.)

 Typical behavioral patterns for P(t)

– Between measurement samples

– Immediately after measurements are processed

61



Kalman Filtering Consultant Associates © 2011

Convergence (cont.)

 An example of a combined behavior patter for P(t)

– Between and at the time of measurements

 Notes

1. Processing the measurement tends to reduce P

2. The larger Q parameters are, the lower the overall estimation accuracy 

becomes

3. System driving noise tends to increase P

4. The damping in a stable system tends to reduce P

5. An unstable system tends to increase P

6. With white measurement noise, the time between samples can be shortened to 

reduce P

7. The behavior of P represents a composite of all these effects and often reaches 

a ―statistical equilibrium‖
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Causes, Cures of Non-convergence

 Non-convergence categories

– Non-convergence predicted by P (optimal case)

 As ―natural behavior‖

 Due to non-observability

– Non-convergence not predicted by P (suboptimal case)

 Due to bad data *
 Due to numerical problems

 Due to mismodeling *

* Here we are caught lying to the filter
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Bad Data Rejection

 Data rejection

– Assuming that adequate knowledge of the innovations—vector 

exists—data rejection filters can be implemented

– For example

 Excess amplitude

If                                           reject data

 Excess rate (or change)

If                                                                      reject data

 Other

– Many ingenious techniques have been used, but often depend on the specifics 

involved

– For example, Chi-Squared Distribution

   MAXi
ˆ AXHZ

      MAXi1i
ˆˆ δAXHZXHZ

 XHZ ˆ
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Chi-Squared Statistic

 Detecting anomalous sensor data

– The Kalman gain matrix

– includes the factor                                            the information 

matrix of innovations.  The innovations are the measurement 

residuals                                    the differences between the 

apparent sensor outputs and predicted sensor outputs.  

– The associated likelihood function for innovations is

– and the log-likelihood is                                             which can 

be easily calculated.
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Chi-Squared Statistics (cont.)

 Detecting Anomalous Sensor Data (conc.)

– The equivalent statistic

is nonnegative with a minimum value of zero.

– If the Kalman filter were perfectly modeled and all white-noise 

sources were Gaussian, this would be a chi-squared statistic 

with distribution.   

– An upper limit threshold value on        can be used to detect 

anomalous sensor data, but a practical value of that threshold 

should be determined by the operational values of        , not the 

theoretical values. 

– That is, first its range of values should be determined by 

monitoring the system in operation, then a threshold value         

chosen such that the fraction of good data rejected when                  

will be acceptable.


kvkk vv YT

2X

2X

2X

2Xmax
22 XX max
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Kalman Filter Engineering

 Square root filtering

– Robust against round off

 KF implementation requirements

– Memory & OPS

 Nuisance Variable Examples

– Some can be ignored (at some cost)

 Correlated noise states (e.g., S/A)

 Anything not appearing elsewhere in model

– Some cannot be ignored

 Sensor biases

 Sensor scale factors
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Square Root Filtering

 Riccati equation not well conditioned for solution in 

finite precision

 Square root filters replace covariance matrix P by 

Cholesky factor C such that CCT = P.

 Riccati equation reformulated (many ways) in terms of 

Cholesky factors is more robust against computer 

roundoff

 Riccati equation problems

– Asymmetrical  P

– Negative values on diagonal of  P

– Unable to invert (HPHT+R)

– Complex values in  P

– Estimates diverge or fail to converge
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Triangular Cholesky Factors
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Other Cholesky Factors

 Modified Cholesky factors

is diagonal

TT

T

T

AACMM

ACM

IAA

PCC









100

10

1

23

1312

T

u

uu

U

D

UDUP


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Alternative Implementations

Matrix Format Corrector Predictor

Symmetric positive Def. Kalman Kalman

Gen. Cholesky factor Potter

Triangular Cholesky

factor
Carlson Schmidt

Modified Cholesky factor Bierman Thornton

CC 
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Cholesky Factors

 ―Virtues‖ 

– Not unique—can take many forms

– Forms related through orthogonal transformations (can be 

exploited)

– Memory efficient 

– Computationally efficient 

– Better condition for inversion 

– matrix elements

– Condition number 

 ―Same performance with half the bits‖

– Non-negative definite P guaranteed

– Symmetric P guaranteed

– Enabled Kalman filtering applications

 Thousands of state variables

 Poorly conditioned problems

  2/12  NNN

2/1010 xx 
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Square Root Riccati Equations

 Observational updates (corrector)

– Rank-1 modifications of Cholesky factors

 Potter, Carlson (triangular), Bierman (UD)

 Temporal updates (predictor)

– (Potter)

– (Schmidt)

– Modified weighted Gram-Schmidt (Thornton)

kk CC 1

  ACCC Qkk 1
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Nonlinear Kalman Filter

 Nonlinear Plant and Measurement Models

 Dimensions of Vectors and Matrices in Nonlinear Model
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Linearized Kalman Filter

 Partial derivatives evaluated along some ―nominal 

trajectory‖ of the system.

 Used principally for covariance analysis of expected 

system performance, when all one has is a nominal 

trajectory, or set of nominal trajectories.

 Can be used for pre-computing Kalman gains, but 

depends on following close to nominal trajectory.

 Reminder:

– Linearization is used only in the Riccati equation for computing 

the Kalman gains.

– The estimated states are propagated in time by integrating the 

full nonlinear dynamic model.

– The predicted measurement is calculated using the full 

nonlinear sensor model.
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Extended Kalman Filtering

 Applies only to nonlinear problems, either nonlinear 

dynamics or nonlinear sensors, or both.

 All partial derivatives are evaluated at the estimated 

values of the state variables.

 Requires full nonlinear implementation of state 

dynamics and dependence of measurements on state 

variables. 
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Tables of Kalman Filter Equations
Table 1:  Discrete Linearized Kalman Equations

Nonlinear Nominal Trajectory Model

Linearized Perturbed Trajectory Model

Nonlinear Measurement Model

Linearized Approximation Equations

Linear perturbation prediction

Conditioning the predicted  

perturbation on the measurement

Computing the a priori covariance 

matrix

Computing the Kalman gain

Computing the a posteriori 

covariance matrix
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Tables of Kalman Filter Equations
Table 2:  Discrete Extended Kalman Equations

Nonlinear Dynamic Model

Nonlinear Measurement Model

Nonlinear Implementation Equations

Computing the predicted state 

estimate

Computing the predicted  

measurement

Linear approximation

Conditioning the predicted 

estimate on the measurement

Conditioning the a priori 

covariance matrix

Computing the Kalman gain

Computing the a posteriori 

covariance matrix
78

   kkkkkk Qwwxx ,0,111 N~ 

   kkkkkk ,Rvvxhz 0~, N

      11 ˆˆ kkk xx 

 
 






1ˆ

1
1 |

kxx
k

k
x



       
1

T1
11

1
1   kkkkk QPP

           1T11T1 
 kkkkkkk RHPHHPK

       kkkk PHKIP 1

   kkk xhz ˆˆ

       
 






kxx
k

kkkkkk
x

h
HzzKxx ˆ

1 |,ˆˆˆ



Kalman Filtering Consultant Associates © 2011

Examples of Nonlinear KF

 Example:  Discrete Linearized Kalman Filter

– Consider the discrete-time system

 for which one can use the ―nominal‖ solution equations from Table on 

pages 12-13.

 to obtain the discrete linearized filter equations
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Example (conc.)

 Discrete Extended Kalman Filter

80
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Sigma Point Kalman Filters (SPKF)

 Unscented and central difference Kalman filters

– Distinguished by weights and scaling parameters associated 

with sigma points

– In contrast to EKF, SPKF does not require an approximation to 

nonlinear dynamics and measurement models using Jacobian 

in order to calculate the covariance of a random vector (RV) 

propagated through the nonlinear models

– In SPKF, a set of deterministically selected sigma points is 

chosen which have the same mean and covariance as the 

original RV

– These sigma points are propagated through the nonlinear 

models 

– The mean and cov. of transformed RV is calculated from the 

sigma points

– This captures the mean and cov. accurately to the 3rd order for 

arbitrary nonlinear functions (1st order for EKF)
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Sigma Point Kalman Filters (SPKF)

 Comment

– SPKF may be an option in considering the design of new 

systems

– But— a modification of the existing EKF GPS/INS based 

tightly coupled system is neither required, nor appropriate to 

improve the performance.
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Unscented Kalman Filter (UKF)

1)  UKF is initialized

2) Time update     

a)

– Square roots calculated by Cholesky’s decomposition
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Unscented Kalman Filter (cont.)

b)

c)  A priori state estimate

d)  A priori error cov.

3)  Observation update 

(Use the         from Part 2 b)

a)

b)
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Unscented Kalman Filter (cont.)

c)  Cov. of predicted measurements

d)  Estimate the cross cov. between

e)  Meas. update of state estimate done using normal KF
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Comment

 System and meas. equations are 

– Then

– Use the same process as before
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