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What Is A Kalman

Filter?




Problem

e Develop an algorithm to process the data
Z(ty +iAt), i=1,2,3,.30

and form an estimate of position P(¢, +6). Use all

relevant information.
/

TARGET
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Problem (cont.)

e Kalman filter based upon given model(s)
— Measurement process model
Z(t, +iAt) = P(t, + At) +v(t, + At), i=1,2,3,.30
At=0.1SEC

Data RV Position Measurement

_ Error +/- 50 ft
- System dynamics model

P=V
V=4
A=0
— Initial condition model
P(¢,)=100£10 KFT

V(t,)=-15+1 KPS
At,)=20+1 Gs
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Alternative Problems, Issues

e \What is the required radar accuracy to achieve a
prescribed accuracy in the final estimate of P(, +6).

e \What are the implications of having range rate
information available in addition to range data?

e How about samples every 0.05 sec, 0.01 sec., etc.?

e How sensitive is the algorithm to deviations from
assumed model?
- Suppose Ais not constant
- Suppose measurement errors not “independent”

e Given the initial conditions, how accurately could one
estimate P(t,+6) without any data?
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What is a Kalman Filter?

e Algorithm for generating estimates of the state of a
system based upon

-~ A mathematical model
e System states are governed by linear differential or difference equations
driven by white noise
e Measurements are linear functions of the states + white measurement
noise

— An initial estimate
e Initial estimates (can be very poor) are required. Also level of uncertainty
needs specification
-~ A set of measurements

e Data from real hardware (sensors) such as GNSS

- Pseudoranges
-~ Delta Pseudoranges

Kalman Filtering Consultant Associates © 2011




RV Example

e Mathematical MODEL

P=V;V=4, A=0 (no noise in this example)
Z(t, +1At) = P(t, +1At) +v(¢, +iAt)
v(t, +1At) =150 FT

e Initial estimate

P(t,) =100 £ 10 KFT
V(t,)=—15t1KPS
A(t,)=20t1Gs

e Measurements
100752, 99243, 97732, ...
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A

Kalman Filtering Problem

e Top level sketch

Noise

(error sources)

Initial estimate

—

Physical
system

—

Meas.
process

—

Noise
(error sources)
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Attributes of Kalman Filter

+ Kalman filter is “optimal”™— if physical world and mathematical
model coincide. This is never the case. Dealing with model
disparities is major task of Kalman filter designer.

+ Kalman filter is “recursive— estimates are updated upon receipt
of each measurement. No need to save past data.

Kalman filter creates its own error analysis— the “15” estimation
errors are generated as part of the algorithm. But the values
are only as good as the model.

— Kalman filters can create numerical difficulties— precision,
memory, speed.

Kalman filters are easily reconfigured to handle wild data points
and model changes.

Kalman filter model is linear— real world is always non-linear, to
some extent.

+ Kalman filter operates in vector/matrix format— concepts and
operations are independent of number of states.

I+

_|_

I+
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Example: Curve Fitting

e Given
— Three data points  (t,.2,).(%,.2,), (4. z) i
- Arelationship betweentand z [T Q:
oftheform Z=a+pBt+yt o [T 0

- Find a, B, y interms of the given data.
e Solution Z=o+t BHely

Zy=a+t, B+t Yy

%=a+gﬁ+@y

z |=|1 4 é p (2)
| |1t 6]y
/Z =HX

H'Z=H'HXx=X | X=H"'Z (3)
e Solution amounts to solving 3 equations for 3 unknowns o, B, v

Since Eq. (2) is satisfied, the Z vs ¢ curve determined by Egs (1) and (3)
is guaranteed to pass through the three data points (¢, z,), (¢,,z,), (¢, z;)

almE@ Filtéging Consultant Associates © 2011
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Example: Curve Fitting (cont.)

e Given
~ Two data points  (t.2).(%, z) i
- Avrrelationship between ¢ and Z ofthe | 0
form Z=oa+PBt+yt’ 0 :
- Find o, B, v interms of the given data. g
e Solution
z=a+nB+sy  two equations :> UNDERDETERMINED

=0+t B+t y and 3 unknowns

z—ol ¢4 2|[B zl—tlﬁ}_{l tf“oc} {Zl—tfy}_{l tl“ﬂ
= 1 2 2 = 3
Lz—a} Lz fzz}{y} W Lz_tzﬁ 14|y @ z, — 13y Lt ||B ©
e Procedure: choose an o, B, or Yarbitrary and solve

Eqgs (1), (2), or (3) for remaining two unknowns.
- Result: An infinite number of /

solutions exist. Some
possibilities are

Filtering Consultant Associates © 2011
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Example: Curve Fitting (cont.)

e Given R
- Fivedatapoints g 0
(tl7zl)3(t2922)7 (t3,Z3),(t4,Z4), (tsazs) ______________ 00 I
- Arelationship between ¢ and Z of |- 0o
the form Zz=co+ps+ys? ", § ,
- Find a, B, y interms of the given data
e Solution
(2] (1 7 2] S equations
! 1 and :> OVERDETERMINED
2| |15 t22 % 3 unknowns
z3|=|1 1 1 B Lsg=Hs X5
| |1ty 2] |y
1Zs] |1 s tsz_ ?/
o, B,y °/ E ®
Approach 1: Use only the first 3 equations and solve for asin : :
first part of this example; ignore the last 2 equations.. | 1
Result: curve will pass through first 3 data points. May not : :
even come close to curve 1 L . >

Approach 2: Try drawing a “best fit” to the data. See curve 2.
m‘é@ Fitégingl‘épns@gtgant Associates © 2011




Example: Curve Fitting (cont.)

o

e Denote achosen setof o B vvaluesby 4 B 7.
Alsolet Z =a+pe+9* i=123,..5
- We propose to choose the &, B, jaccording to the criteria that

the fit determined is best in the “least squares” sense.
Specifically, we minimize Jwhere 1

J=%(z-2) =% d) ; n=5

For this example

S ..

e Procedure
7= (z,-2}=(z-2f(z-2)=(z-u %) (z-u %)

0 [ (Z _ H)A()T(Z _ H)()} =0 (NECESSARY CONDITION)

AN

oX
- Theaboveleadsto |y _— (HTH)_IHTZ ‘HTH‘ -0

aImJQ Filte‘ipg CoEguItarﬁgAssociates © 2011
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Example: Curve Fitting Summary

e Given
— Observation vector Z
— Vector of parameters to be determined X, ,
- Assumed model of the form Z=HX ; H, _,
- Find X

e Case 1: Underdetermined m<n

— Infinite number of solutions exist

— Thatis, not enough information (equations) to uniquely specify all elements of X
e Case 2: Exactly determined n=m

- Unique solution for X exists provided |H|= 0

X=H"7

e Case 3: Over determined m>n

— Cannot guarantee a perfect fit to the data

- A“best fit” in the least squares sense can be determined to be

X=(H"H)'H'Z ; |H"H|=0

— This solution guarantees J = (Z —H)A()T(Z —I—DA(): minimum
— This case is of the most interest.

Kalman Filtering Consultant Associates © 2011
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Example: Curve Fitting Summary

e Curve-fitting least squares fit
7 = HX

X=(H"H)'H"Z H"H|#0

1. Results predicated upon assumed model Z = HX

/
|! 0 £ : MODEL@

0 0 . @
Model validity is always a problem
2. All residuals (Zi_ii) are weighted equally. No provisions for
“de-weighting” some points.
3. No information regarding “a priori” knowledge of parameters
used.
4. Batch processing is implied by )?z(HTH)_lHTZ
5. Criteria is one of fitting data; not minimizing estimation error,
X-X

7 = o+ Pt + vyt

Ak aneh ﬁl[éfmg Consultant Associates © 2011
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Example—The Kalman Filter

Curve-fitting least squares fit

e The Kalman filter
- Kalman filtering brings into consideration 2, 3, 4, 5.
- Modeling remains a problem.

- The least squares curve fit and the Kalman filter yield the same
estimates when

e Initial uncertainty in X s large.
e All observations are of equal quality.
e System is overdetermined or exactly determined.

- The Kalman filter is recursive.
- The Kalman filter accommodates a dynamical model for X.

Kalman Filtering Consultant Associates © 2011
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Error Models for

Random Processes
and Sequences




Exponentially Correlated Noise

e A process x() is called exponentially correlated if it has
zero mean and an autocorrelation function of the form

E {x(t,)x(t,)} =07 e -t = ol =y (z); 7=[t,—¢

X XX

1 13 . . ”»
— where = correlation time.

— This process is stationary and has a power spectral density

: 2
given by Txx(w): :;O Txx(f) oI g — 220x 0(2

O +a

- V¥ _(r)and ¥_(w) are sketched below

L N N T

gﬂl’))ering Consultant Associates © 2011

>

19




White Noise

e Define white noise the limit of an exponential process

as A
- Correlzatizon time=é—>0
_ ¥(0)==%-= constant o
_ In the limit v
r'd

T >
> A

- AN

- Comments >
e White noise variance ¥(0)=oo )
- . : o . : :
e Parameter characterizing white noise =—— is not dimensionally the same
as o2 «

%3‘2% | e True white noise does not exist in nature due to infinite variance
T
ultant Associates © 2011
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White Noise

Question: If white noise does not exist in nature, then
what good is it ?
Answer:

1. In many cases, it can be used to approximate the real world.
2. Numerous additional processes can be generated as

“Solutions to linear differential equations Two ways
driven by white noise” of saying
4—
“Responses to linear shaping filters the same

driven by white noise” thing.

We will make extensive use of item (2) throughout the
remainder of this section.

Brief examples of (1) and (2) follow.

Kalman Filtering Consultant Associates © 2011 21




White Noise

e Example: Use of white noise as a simplifying

approximation 6(s) s

2
- Given:  G(s), ¥, ()= 20°a

¢/

- Find: ¥ (0) __‘_EC _/__/

¥, (0)=|G(jo)" ¥, (o)

2
= \G(]a))f 220 0(2 <—approximating Approximation works because
a +w N7

o) with W(a)) v (a)) ~WY forlow @
-[GG) 22 )20
AV o ‘G(]a))‘ ~ () forhigh @
_ \G(]a))\z LIJW where Tw(w) =

\_ﬁ/—J

tering CondokGHNAsEciates © 2011




Example

e Generating a random walk as integral of white noise

A
—> —>
>
> x(t)zJ.(; w(r) dr
If w() is a white noise process p {
with parameter o2 E{x(t)}zE{I W(T)dl' }zj E{W T)drt

O=Jw@dr | ) xe) )= B[ [ vl dn d |

Then x (¢) is a random walk &2

process with variance growth — jtl e E{W(Tl) W(Tz) dr, dz-z}
rate, i.e., 02 _ 021‘ 0 0

xe) = h tha 2
- We have generated a random = jo 0o 9 (v, —7)dr, dry

walk process using white noise. 5
=0~ minimum {tl, ly }
 We will make extensive use
of this concept.

1
)ﬁi@z Cds(tﬂt-a)ﬁt Associates © 2011
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Random Walk

e A process x(t) is a random walk if it has a zero mean
and an autocorrelation function of the form

E {x(tl)x(tz)}zo'z minimum {l‘l , 12}

- For ¢, =t,=t,we have E {xz(t)}zo-z(t)zo-zt

X

— Note

e The variance of x(¢) grows linearly with time
® Xx(1) is non-stationary

— Caution
e The parameter o2 has units of x2 per unit time.
e o2 isnota variance, but a variance growth rate.

Kalman Filtering Consultant Associates © 2011
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Example

e Generating an exponentially correlated process as the
solution to a differential equation driven by white noise

generated as solution Shaping Filter
to differential equation Representation
driven by white noise
> —> —>

Remember for exponentially
correlated noise

e PSDfor x

f)=16im|* w.0)

Hence, x (t) is exponentially
\_/ correlated with
2
O
2
200 B, 2L

tlmw = >
nf Associates 0

25




Previous Result

e Reworded slightly:

- If we wish to be an exponentially correlated process with

: : 2 . .
given variance o and correlation time, then
have these properties.

- A steady state solution to

- Where w(t) Is a white noise process with

¥ (r)=2cla 5(r) ; ¥, (0)=20la

w

Kalman Filtering Consultant Associates © 2011
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Error Modeling

SINUSOID

F\vx(t)"»"z 005wyt

Hlo) = xotplesy) + s,

PSD AUTOCORRELATION FUNCTION WP!H@;_FILHR . - STATE SPACE FORMULATION
. ) _ 2 '
wresose | ()=o)
‘ IIIw (a)) = 0-2 -
| ' ; X = w(t)
RANDOM ALK RN s o PR 2 .
| FRLICY, a,"(0) = 0
RANDOM x(,) . g , | x ; 0
w"STAm x(.) ™ z' o ‘(') .7 § o ) ﬂ! (0) » U )

om

(1) %, (t) GENERATED IN
X, .Acconnmcs WITH (1)
AND (2) WILL HAVE .

PSD AND AUTOCORRELA-
TION FUNCTION IN LEFT

‘ 2
POV =1e™ 0] -, aND coLum
| 0 0
T *0) .
EXPONENTIALL ' : : X s a Taw
2 L (t X = ax +oflaw
CORRELATED %g
ORDER mrmn T o 5 0) = *
1, T
_ | o " SRRELATION ly_(+) 'wrae)
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GNSS Clock Modeling and Corrections

e On board clock errors
— Space vehicle (SV) time

e Timing of the signal transmission from each satellite
e Directly controlled by its own atomic clock with NO corrections applied

- GPStime

e Highly accurate

e However, errors can be large enough to require corrections
e Difficult to directly synchronize clocks in all the satellites
([

Instead, clocks allowed some degree of relative drift estimated by ground
station observations and used to generate clock correction data in GPS
navigation message

e SV time is corrected using this data, and result is called “GPS time”

Kalman Filtering Consultant Associates © 2011 28




Time Calculations (GPS book, p. 64)

(computed)

" The user should correct the time received from the space vehicle in seconds with the

(From Subframe 1) equation below :
t=t,, —Alt
v =l ), (3.8)

(AtSV)Ll = Aty —Tgp
where

_ Differential bias provided
on subframe 1

tsy = effective SV PRN code phase time at message transmission time (seconds)

(Time from pseudorange time tagged)
Aisy= SV PRN code phase time offset (seconds)

1= GPS system time (seconds) , T

%V )Lq The SV PRN code phase offset is given by

¥ )——O— Ay, =a,+a(t-1,) +afr-1.) +4ar, (3.9)

where Aoty (t —loc )+ Aoy, (t - toc)

ap, an, and ap = the polynomial coefficients given in the ephemeris data file

1. = the clock data reference time (seconds)

At, = the relativistic correction term (seconds) given by
At,=FeJZsinE, (3.10)

In equation (A-3), Fis a constant whose value is
"2\/; -16  Sec,
F=—"%5 = 444280763310 A orer (3.11)

where

= 2 melers, = d of light
Kalman Filtering Consultant Associates © 2011 ¢=299792438x 10 /Sec speed of lig
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GNSS Receiver Clock Modeling

e Receiver clocks
- Relatively inexpensive, stable over periods of time (0-10S)

- Works well for GNSS receiver applications IF receiver can use
the timing information from hyperaccurate GNSS satellite
clocks to maintain required long term stability and accuracy of

receiver clocks

e Clock phase and frequency tracking

-~ Most common implementation

e Uses 2-state random process model
e Keeps the receiver clock synchronized to GNSS satellite clocks

e Kalman filter with two state variables

Kalman Filtering Consultant Associates © 2011
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Receiver Crystal Clock Modeling

e [wo errors due to clock

—  Clock bias
—  Clock drift

e Continuous domain

Xl —
ﬂ__
K8Im

_ White Noise
White Xy l+ W, X
) 2
Noise Frequency o) R Phase
Wi Error N Error
Drift
(Drift) X 1
RANDOM WALK i

an FiIterinSX@rﬁJ{ént Associates © 2011
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Clock Model (cont.)

).(2 :X1+W2
X1:W1

el

—~ Need PSD (power spectral density of W, IV, )

1 At
¢=eFM:]+FAt:L) 1}

— Discretize with back difference

Xy | [1 At]] x5 N Wi
sampling time At sec.

Kalman Filtering Consultant Associates © 2011
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Process Noise Covariance for Receiver Clocks

__qb 0 _ T (. B W, (1)
Qt—_o qd} : Qt—E[W(t)W )] . W(t)_{Wl(t)}
0 :_quf +qd % qd% 0 :_qb(c)z 0 {.036 o}
o | qd & gdne | 00 qd(c) 0 09

e Clock process noise covariances (bias and drift)

0 gb(c) At +qd(c )2%3 qd(c )2 A {085 .07}
g gd(c)* A qd(c)zAt 07 014

gb = spectral amplitude = 0.4(10_18 )sec ~ %0

qd = spectral amplitude =1.5 8(10_18 )sec_1 ~ 27z2h_2
hy=18x10"", h_,=3.8x10"*

e From Allan variance plot with asymptotes for a typical crystal oscillator
e Reference page 472, KF book
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Process Noise Covariance for Receiver Clocks (cont.)

e Frequency drift variance
qa’(c)2 =.09m* /s’

— Value depends primarily on
e Quality of quartz crystals
e lIts temperature control
e Stability of its associated control electronics

e Phase noise variance
qb(c)2 =.036m" /s

— Value depends more on the electronics
e ¢ =speed of light =3 x 108 m/s

Kalman Filtering Consultant Associates © 2011
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GNSS Receiver Clock Modeling

e Notes

~ Zero mean white noise processes W,(t) and W,(t) are
uncorrelated

- FLICKER noise

e This model is a short term approximation of what is called “flicker” noise in
clocks

e Power Spectral Density (PSD) of clicker noise as a function of frequency
falls off at 1/f.

e Behavior cannot be modeled exactly by linear stochastic differential

equations
- Real clock drift characteristics

e Studied extensively

e ALLAN variance plots depict the amount of RMS drift that occurs over
specified period At

e Reference: J. A. Barnes, “Models for the Interpretation of Frequency
Stability Measurement,” NBS Tech. Note 683, Boulder CO, August 1976
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Clock Estimation

e Clock estimation uncertainties vs. clock stability

Kalman Filtering Consultant Associates © 2011

For stationary receiver with good satellite geometries

Under such ideal conditions, clock stability does not severely
compromise location uncertainty

But it does compromise clock synchronization (frequency
tracking)

Tends to corrupt the navigation solution
See plot
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Estimation Uncertainties vs. Stability

o
=
| S
2 1037
ir Cp [m]
5 Cq [m/s]
<
- 102
=
i
<
2 104
=
&
| S
@
S 100
>
72
=
14
10-1 I I
109 108 107 106

RMS Clock Stability [part/part @ 1 s]
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GNSS Measurement

Models




General Measurement Models

e Let measurement model be non-linear

Zy =hlx , k)
e Expand this L.H.S. in Taylor series about some x;°™

Sh(x. k)

ax

X

Z, = h(x,,k)=h(xp M )+

‘5xk +H.O.T.

—+NOM
= _xk

52/{ :h(xkak)_h(XIFOMak)

Kalman Filtering Consultant Associates © 2011
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General Measurement Models

e Equation becomes

52, OG5,

ox
X =XNOM
k

SZk :HECI]Sxk

Kalman Filtering Consultant Associates © 2011
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GNSS Measurement Models

-~ Measured pseudorange
p=p,+P,+v,+Cb
where

p, =J(X—|X)2 +(y=Y)(z-2)

X.,Y,Z userposition(unknown)

X,V,zZ  satellite position (known)

Bp = time correlatederrors

Vp = measurement noise

Expand p(X,Y,Z) about Xo,Y0,Zg

approximat positionof user
in Taylor series

op,
0(X,Y,Z)=p,(Xy,Yy, Zo )+ a; 8 x+B,+v,
X — XO’Y()’ZO

Kalman Filtering Consultant Associates © 2011

41




GNSS Observation Equation

e Linearization

8222_20

p

8p
8 - X,Y,Z 7 X ,Y ,Z - r

where
api _ —(x; —X)
X =X+ 01 +(E-2)
8x+vp
X5 Xl 2o

Kalman Filtering Consultant Associates © 2011
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Linearization (cont.)

=1
opr _

—(x; —Xy)

X J(x;—X0)? + (i —¥o)? + (2~ 2o)?

-, — 1)

oy \/(xi ~ X))+ (i —Yp)’ +(z; — Zy)”

—(z, = 2y)

i1 n
WO DN

Kalman Filtering Consultant Associates © 2011
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Linearization (cont.)

_Gp}, 591 ap}f 1 ()_
_621 B Ox 8y Oz _SX | _vl |
P op>  op2  op> P
5 7 14 r l O 6 2
N 34
| | ox oy oz Yo
53| | opd opd p > M.
Zp Pr Pr Py 1 0| Ch Ve
st |, P, & cd | v
| 0z, | 4 4 4 B d L P_
4x1 apr apr apr 1 O 5%1 4x1
ox oy oz 7
4%5
6x,8y,0z position errors, Ch=clock bias
4x] 4x5 5x1  4x1 :
Z, = HX,+v, Cd= clock drift

Kalman Filtering Consultant Associates © 2011




Linearized Observation Model

e 3 States
R 1 1 & x |
Pr o P g P oo 1 0 ¢
rEN ox oy Oz 20 117
Zp 2 2 2 Sx Vp
op; op; aop; 3
S 22 0 0 01 0 S 2
p| | Ox oy 0z X4 4P
3| 3 3 3 3
o Zp apr 0 é)pr 0 070,, O 1 O o X5 Vp
S5 24 o x oy 0z O X A
L7 7P 4 4 4 P
4x1 aﬁ 0 aﬁ 0 % 01 0 Oxy | —=—
\_é’x oy 0z | 6x |
48 T
X 4x1

§x1 = x Position error
O X5 = x Velocity error
0 x3=y Position error
0 X4 =Y Velocity error
5)65 = z Position error
§x6 = 2z Velocity error
0 x7=Clock bias error
O xg=Clock drift error

Kalman Filtering Consultant Associates © 2011 45




System Dynamics

Models




Modeling (cont.)

4 STATES 5 STATES 8 STATES 11 STATES

X X X X
Y Y Y Y
VA VA VA VA
Cb Cb Cb Cbh
SATIONARY  SJATIONARY

X X

Y Y

Z ALow
| DYNAMICS
)4

7 FAST
I DYNAMICS

Kalman Filtering Consultant Associates © 2011
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8 States - Slow Dynamics

e Discrete Process Model--Car or boat

8xl gy88x1 8x1
Xk = O X g+Wi4

i | X XY Y z Zcbad]
X, = X,iX,%X,fX,?X,fX,fX,ZX,f}
1 At 0 0 0 0 0 0]
0 1 00 0 0 0 O
0 01 AA0O O 0 O
szo 0 01 00 0O )gk1—1+W§kl—1
000 0 1 A 0O O
0000 0 1 00
0 00 0 0 0 1 Af
0 0 0 000 0 1]
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Linearized Observation Model

e For 8 states

o1 | | 1| Oxq
8proapr08pr0108x
(550 Ox oy Oz 2 L]
Zp 2 2 2 Ox P
op; op;. op; 3
572 0 0 O 1 0 5 2
p| | Ox oy 0z X4 4P
3| 3 3 3 S 3
SZP apr 0 apr 0 6pr 01 0 X5 Vp
5.4 ox oy 0z OX ¢ A
| P 4 4 4 P
4x1 apl’ 0 apr 0 apr 01 0 6)(?7 ——
| Ox oy Oz 1| 8xg
42§ ——
8x1 4x1

4x1 4x8 8x1 4x1

Z,=H X,+v,

Kalman Filtering Consultant Associates © 2011
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Kalman Filtering Problem

e Top level sketch

Noise

(error sources)

Initial estimate

—

Physical
system

—

Meas.
process

—

Noise
(error sources)
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Discrete Linear Kalman Estimator

nxl nxn  nxl nx1 nxn
System model: Xp =Py X+ Wy, W~ N (O> Qk)
Ix1  fxn nx1 Ix1 xt )
Measurementmodel: 7 =H, x,+v, , v, ~ N((),Rk) (white)
n |\ nxn

Initial conditions: E <x0> =x, , E <x0 xOT> = F, (-I—)
Other assumptions: E <wk va> =0 forall K, j
State estimate extrapolation: )Ack (—) =0, )Ack_l (+)

, : T
Error covariance extrapolation: P, (—) =0, , B, 1(+) DO, +0
State estimate update: X (+)=x,(—)+ Ek [Zk ~H,x, (—)]
Error covariance update: P, (+)= [] — ]Zk H, ] P, (-)

. . o 1
Kalman gain matrix: K, =P, (—) HkT [Hk P, (—)HkT + RkT

O, = cov.of processnoise w, P, (+)= error cov. of states (a posteriori)

R, =cov.of processnoise v,  P,(~)=error cov. of states (a priori)
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Block Diagram

e System, measurement models & discrete Kalman filter
(one step prediction)

r ——————— 1
| |
TP : : I
W - A
k-1 Xy | | Xe(#) '
KN | > HK ] :
+ | |
| | I I r , I
Xg-q ' l | I
$x-1 j4— DELAY I I $k-1 DELAY
| | | XK_] (+) |
‘ | l { ' DISCRETE KALMAN I
DISCRETE | | '
 SYSTEM L _ _ MEASUREMENT FILTER I

L
—

Ems gEEs genn SEu e Gmuie  Siemh
S S S S A S SN SR S S Sl G ie— e -

COPY OF ORIGINAL SYSTEM
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Representative Sequence of Values of Filter
Variables in Discrete Time

{p(+)); O o)
State = Ny
: (zki K ) ‘
estimate . k
(‘I’mx .
® {xk(")},;

Covariance
matrix

b
{P k(+)}i,; C

L

i
(P -1, Qp - 1) O (PO

(Hk! Rk) '

{Pk + 1(+)}ii

{&k + 1(+)},‘

O

{£k+1(;)_};
(zk + s Kk + 1)

%1)

o {P k+ 1("’)]’,','
(Hk+1-Rk+1)

.%’Qk-ﬁ‘l)

L.
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Discrete time

tk+1

Representative sequence of values of filter variables in discrete time.




Block Diagram (cont.)

e Comments

~ Itis important to notice that K, and P.(-), P.(+) are
independent of observations (measurements)

— There are simpler forms of Ek and P, (+)
— Procedure of computations

1) Compute Pk (—) with Pk—l (+) ) (Dk—l \ Qk—l (given)
2) Compute Ek with P.(-), H, , R, (known)
3) Compute B, (—I—) with Ek (—) ,H, , P (—) (known)

4) Compute )Ack(+) with fck(—),]Zk , Zk(_) (known)
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Continuous Kalman Filter

e Can be derived by using the orthogonality principal
— System model: x(t)=F(t)x()+G()w() , w()~N(0,0())

- Measurement model: z(t)=H (¢t)x(¢)+v(t) , v(t)~ N(0,
— Initial conditions:  E (xy)=x, E<3€0 350T>:P0

— Other assumptions: R™'(t) exists , E[W(t)vT(n)] =0

~ State Estimate: x(t)=F (1) 2(t)+ K () [z())- H(t) ()] , *

e Error covariance propagation

p(6)=F (@) P())+P(1) FT (1)+G(1) 0() G (6)-K () R() K™ (1)

e Kalman gain matrix
K(t)=P() H (t)R7(¢)
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Kalman Filter Data Flow

............................. -

{ INPUT | Kalman Gain K {OUTPUT;

K(z-HX)) | ESTIMATED
K K]
STATE

SENSOR L aHE
Z[k) :
—OUTPUTS
MEASUREMENT
Hix
SENSITIVITY

v

STATE TRANSIT. :
Pk '

TRANSPOSE

MATRIX i
DYNAMIC NOISE :

T : +
Q' :
COVARIANCE

TRANSPOSE

P HT

(HP_)HTR)™!
HP_,HT
SENSOR NOISE +

Rix : VoS INVERSE
tk : “~ HP_HT+R
COVARIANCE :
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Kalman Filter Examples

e Let the system dynamics and observations be given by
the following equations:

Ty = Tk—1+Wk-1
2k = T+ Vi
E{vy) = Ewp=0
E (vhvkz) = 2A(k2 - kl)
E (w’ﬁwkn) = A(kQ - kl)
Z1 = _2
Z = 3
E{x(0)) = #o=

E{ [2(0) - 2] [£(0) — 2s]TY = B = 10.

e The objective is to find )?3 and the steady state covariance matrix P, .
One can use the equations on page 23 with

O=1=H, Q=1, R=2
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Example (cont.)

e For which

P =PP 11

& PO P +1
T PO +2 pigj)1+3

P 41
Pe(+) = —‘(’i)” (P +1)

2(p{H) 41y

+

Pe(+) =
) P43

Tp(+) = .’B(+) + Ky (2 — :E;:-)l
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Example (conc.)

o |et Pr(+) = Pr_1(+H)
P
PP+P-2
P =1, Positive definite solution
For k=1

Py+1
Fo+3

Z1(+) = 2o +

(2-%0) =1+ 3(2-1)=

P (steady state cov.)
2(P+1)

P+3
0

11 o
13

e Following is a table for the various values of the Kalman

filter 4
k Pk(_) Pk(+) K, )%k(_")
22 11 24
1 R S E I ¢
, 3 10 35 153
13 61 61 61
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Convergence of Kalman Filter

e An optimal filter converges if LIM (Trace P) = 0
[ =00

e Example of typical behavior:
A

P DETERMINES THE "1o" ENVELOP SURROUNDING X

T

NOTES

1. EACH TIME THE FILTER IS
RUN A DIFFERENT X(t) IS
GENERATED - EVEN WITH THE
SAME INITIAL CONDITION X(0)

2. AT TIME t*, THE AVERAGE
(ACROSS THE ENSEMBLE OF
>t ESTIMATES) ESTIMATION-
ERROR IS,
ZERD, E(X-X;) =0

L.

For an optimal filter, convergence or lack of convergence
is correctly and fully defined by P (7)
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Convergence (cont.)

e Typical behavioral patterns for P(¢)

- Between measurement samples
P(t)4 A
B
C | >t

TYPICAL CAUSES

SYSTEM UNSTABLE
X=AX A>0
OR SYSTEM HAS DRIVING NOISE
[ X =AK+W

SYSTEM HAS CONSTANT STATE
X=0

SYSTEM 1S STABLE AND HAS
NO DRIVING NOISE

| X=-AX A>0

- Immediately after measurements are processed

X XA
P A - x X | CASE
X —
X A
X
X .
i X X X X X X X X XB ;
X
. c
X x c
x b 4 .Y X _’ k

11

TYPICAL CAUSES

SYSTEM DRIVING NOISE AND
MEASUREMENT NOISE ARE LARGE
RELATIVE TO P, '
STATE 1S UNOBSERVABLE AND
UNCORRELATED WITH OTHER STATES

SYSTEM DRIVING NOLSE AND
MEASUREMENT NOISE ARE SMALL
RELATIVE T0 P,
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Convergence (cont.)

e An example of a combined behavior patter for P(z)
- Between and at the time of measurements

PA

aX+¥ a<o
X+V

i

e Notes
1. Processing the measurement tends to reduce P

2. The larger O parameters are, the lower the overall estimation accuracy
becomes

System driving noise tends to increase P
The damping in a stable system tends to reduce P
An unstable system tends to increase P

With white measurement noise, the time between samples can be shortened to
reduce P

7. The behavior of P represents a composite of all these effects and often reaches
a “statistical equilibrium”

o Ok W
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Causes, Cures of Non-convergence

e Non-convergence categories

- Non-convergence predicted by P (optimal case)

e As “natural behavior”
e Due to non-observability

- Non-convergence not predicted by P (suboptimal case)

*
e Due to bad data
e Due to numerical problems

e Due to mismodeling *

* Here we are caught lying to the filter
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Bad Data Rejection

e Data rejection
- Assuming that adequate knowledge of the innovations—vector
(Z — HX ) exists—data rejection filters can be implemented

- For example
e Excess amplitude

I ‘(Z _H‘Y)i

> AM W= reject data

e Excess rate (or change)

it |(Z-HR),, ~(Z - HR)|> ddy10x = reject data
e Other
- Many ingenious techniques have been used, but often depend on the specifics
involved

— For example, Chi-Squared Distribution
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Chi-Squared Statistic

e Detecting anomalous sensor data
— ~1
- The Kalman gain matrix K, = Pk(—)Hg(HkPk (—)Hz+Rk)

o /

Yvk

— includes the factor Y, = (HkPk (—)H£+Rk) 1, the information
matrix of innovations. The innovations are the measurement
residuals v, =z,—H,x,(-) ,the differences between the
apparent sensor outputs and predicted sensor outputs.

— The associated likelihood function for innovations is
L(v)= exp(—%v,? Yok "kj :

— and the log-likelihood is log[L (v, )]=-v/ Y,,v, , which can
be easily calculated.
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Chi-Squared Statistics (cont.)

e Detecting Anomalous Sensor Data (conc.)

The equivalent statistic AN

1
is nonnegative with a minimum value of zero.

If the Kalman filter were perfectly modeled and all white-noise
sources were Gaussian, this would be a chi-squared statistic
with distribution.

An upper limit threshold value on X can be used to detect
anomalous sensor data, but a practical value of that threshold
should be determined by the operational values of X’ , not the
theoretical values.

That is, first its range of values should be determined by
monitoring the system in operation, then a threshold value X’ __
chosen such that the fraction of good data rejected when x? > x2
will be acceptable.

X2

Kalman Filtering Consultant Associates © 2011 66




Kalman Filter Engineering

e Square root filtering
- Robust against round off

e KF implementation requirements
- Memory & OPS

e Nuisance Variable Examples

- Some can be ignored (at some cost)

e Correlated noise states (e.g., S/A)

e Anything not appearing elsewhere in model
- Some cannot be ignored

e Sensor biases
e Sensor scale factors
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Square Root Filtering

e Riccati equation not well conditioned for solution in
finite precision

e Square root filters replace covariance matrix P by
Cholesky factor C such that CC’ = P.

e Riccati equation reformulated (many ways) in terms of
Cholesky factors is more robust against computer
roundoff

e Riccati equation problems
— Asymmetrical P
— Negative values on diagonal of P
- Unable to invert (HPH"+R)
- Complex values in P

- Estimates diverge or fail to converge
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Triangular Cholesky Factors

ST 0 lenp ¢ 3 P11 P P3i
Cyp € 0 0 cn cp| =Py Pn Pn
c31 ¢xn el | 0 0 ¢y P31 Pz C33
0112:1911
€11 €21 = P21
C11 €31 = P31
0312 +C322 +C332 = P33
2 2

Cry1 € =Py

Cy1 C31 T Cpp C3p = P3p
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Other Cholesky Factors

cct=p
AA" =1
M=CA
MM'=Cca4'

e Modified Cholesky factors
P=UDU'

D is diagonal
Iy g
U: O 1 U23
0 0 1
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Alternative Implementations

Matrix Format Corrector Predictor
Symmetric positive Def. Kalman Kalman
Gen. Cholesky factor Potter C=0dC
Tri | holesk

riangular Cholesky Carlson Schmidt
factor
Modified Cholesky factor Bierman Thornton
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Cholesky Factors

e “Virtues”
— Not unigue—can take many forms

- Forms related through orthogonal transformations (can be
exploited)

— Memory efficient

— Computationally efficient

— Better condition for inversion

~ N*—>N(N+1)/2  matrix elements

_ Condition number 10* — 102
e “Same performance with half the bits”

- Non-negative definite P guaranteed
- Symmetric P guaranteed

- Enabled Kalman filtering applications
e Thousands of state variables
e Poorly conditioned problems
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Square Root Riccati Equations

e Observational updates (corrector)

- Rank-1 modifications of Cholesky factors
e Potter, Carlson (triangular), Bierman (UD)

e Temporal updates (predictor)
- Coy=0C, (Potter)
- Cua=loC| €yl 4 (Schmidt)
- Modified weighted Gram-Schmidt (Thornton)
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Nonlinear Kalman Filter

e Nonlinear Plant and Measurement Models

Model : Continuous Time a Discrete Time
Plant x = f(x, )+ w(l) Xp = f(Xe_1, k= 1)+ wy_,
Measurement ,_ z() = h(x(), )+ v(t) 2y = h(x,, k) + v,
Plant noise Eiwit)) =0 E{w,)=0

E(w(hwT(s)) = §(t - 8)Q(t) E(w,w|) = A(k - )Q,
Measurement noise E(v(it) = 0 Eiv,)=0

E(v(t)vT(s)) = &(t - $)R(D) E(vyv]) = A(k - )R,

e Dimensions of Vectors and Matrices in Nonlinear Model

Symbol ‘Dimensions Symbol Dimensions
x,f,w nx1i Z,h,v . L x1

Q nxn R £xE
Ad ~ Scalars
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Linearized Kalman Filter

e Partial derivatives evaluated along some “nominal
trajectory” of the system.

e Used principally for covariance analysis of expected
system performance, when all one has is a nominal
trajectory, or set of nominal trajectories.

e Can be used for pre-computing Kalman gains, but
depends on following close to nominal trajectory.

e Reminder:

— Linearization is used only in the Riccati equation for computing
the Kalman gains.

- The estimated states are propagated in time by integrating the
full nonlinear dynamic model.

- The predicted measurement is calculated using the full
nonlinear sensor model.
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Extended Kalman Filtering

e Applies only to nonlinear problems, either nonlinear
dynamics or nonlinear sensors, or both.

e All partial derivatives are evaluated at the estimated
values of the state variables.

e Requires full nonlinear implementation of state
dynamics and dependence of measurements on state
variables.
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Tables of Kalman Filter Equations

Table 1: Discrete Linearized Kalman Equations

Nonlinear Nominal Trajectory Model

Linearized Perturbed Trajectory Model

Nonlinear Measurement Model

Linearized Approximation Equations

Linear perturbation prediction

Conditioning the predicted
perturbation on the measurement

Computing the a priori covariance
matrix

Computing the Kalman gain

Computing the a posteriori
covariance matrix

nom __ nom
X = P (xk—l )
def 0
ox =x—x""",0x, ~ gk_l | o OXp_p + Wy
X k-1

~N(0,0;)
Zk :hk(xk)+vk > Vi NJV(OaRk)

n e

S () =0l oy (+), 0l w Tisty

o (+)= 5xk( )+ K, [Zk _hk< nomjc_ HIE ]5xk (_)]
HIE] ~ Oy _——

B (—) = (DE(ILP k-1 (+)CDQH + 0k

_ 1
Ky =6 (_)H/E]T [H/E]Pk (—)H;[cl]T + Ry T

iR )

P(+)={-K.H
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Tables of Kalman Filter Equations

Table 2: Discrete Extended Kalman Equations

Nonlinear Dynamic Model

Nonlinear Measurement Model

Nonlinear Implementation Equations

Computing the predicted state
estimate

Computing the predicted
measurement

Linear approximation
Conditioning the predicted
estimate on the measurement

Conditioning the a priori
covariance matrix

Computing the Kalman gain

Computing the a posteriori
covariance matrix

X =Py (xk—1)+ Wiy, Wy ~N (O»Qk)
Zk :hk(xk)'l_vka Vi NJV(O’Rk)

2 (5)= (B (+))

Zp =M (fck (_))

1 9%
(Dk—l~ ax x:)%k_l(_)
. R — . 8h
2(+)=2)+ K (z, - %), H [l] Sk |

B (_) = CDQLP k-1 (+)(DEE + 01

Kk =B (_)H

=V K. 1R ()

x=% (-

e, AT+ & [
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Examples of Nonlinear KF

e Example: Discrete Linearized Kalman Filter

. . . Tr = :cz_ + wp—
_ Consider the discrete-time system DA S
Evk = Ewk =0
E'Ulcl Vg, — ZA(kz - kl)
EBuwg,wp, = A(kz - kl)
Ex(0) = #=2
2o = 2
Fy(+) =1,

e for which one can use the “nominal” solution equations from Table on

pages 12-13. 5
q,[l] NOM — __xz
(=) 63:[ ]E%NOM
= 4
HOEew) = 2 (a?)
oz £—pNOM
= 12
e to obtain the discrete linearized filter equations
£u(H) = Bzp(+) +2
Bzuh) = dbae () + Ky [0 — 8 — 486241 (+)]
Pu-) = 16Pei(+) +1
Pe(+) = [1—12Ky]| P
R - 12P; ()

(144P,() + 2)
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Example (conc.)

e Discrete Extended Kalman Filter

Given the measurements zx, ¥ = 1,2,3, the values for P, Ky, Pi(+) and
#(+) can be computed. If z;, are not given, then Py(-), Kz, and Pi(+) can be
computed and leads towards covariance analysis results. For large k with very

small @ and R, the difference & — x}°™ will not stay small, the results become
meaningless.

This situation can be improved by using the extended Kalman filter as discussed
in KFTP.

Ep(+) = Z_ () + Kplzr — (2x(—))?

Po® = 41O PeoH) +1
3P, [(2x )]

9 [£:()]* Po) + 2

Py(t) = [1—=3Ki(2:)?| Py

K, =

These equations are now more complex, but should work, provided @ and R are
small. '
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Sigma Point Kalman Filters (SPKF)

e Unscented and central difference Kalman filters

- Distinguished by weights and scaling parameters associated
with sigma points

- In contrast to EKF, SPKF does not require an approximation to
nonlinear dynamics and measurement models using Jacobian
in order to calculate the covariance of a random vector (RV)
propagated through the nonlinear models

- In SPKEF, a set of deterministically selected sigma points is
chosen which have the same mean and covariance as the
original RV

- These sigma points are propagated through the nonlinear
models

- The mean and cov. of transformed RV is calculated from the
sigma points

— This captures the mean and cov. accurately to the 3" order for
arbitrary nonlinear functions (1st order for EKF)
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Sigma Point Kalman Filters (SPKF)

e Comment

- SPKF may be an option in considering the design of new
systems

- But— a modification of the existing EKF GPS/INS based

tightly coupled system is neither required, nor appropriate to
improve the performance.

Kalman Filtering Consultant Associates © 2011 82




Unscented Kalman Filter (UKF)

nx1

Xk :fk—l(xk—1)+wk—1 ~ N(Oan)
[x1
Lk :hk(xk)+vk ~ N(OaRk)
1) UKEF is initialized
X,(t)=E X,

Py (+)
2) Time uLodate

a) X, =X_(H)+X , i=1..2n
X' =(nB_®) , i=l..n
X" =(nPL(#) , i=l..n

— Square roots calculated by Cholesky’s decomposition
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Unscented Kalman Filter (cont.)

b) %= rlxi )

c) A priori state estimate
R 2n .
X (—) = ﬁ Z X
i=1

d) A priori error cov.
2n

h . A 3\ V. T
B (=243 (- %) -%,0) +ou
i=1
3) Observatiop update
(Use the X, from Part 2 b)
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Unscented Kalman Filter (cont.)

c) Cov. of predicted measurements

2n (n A N[~ AT
P=5.2 (Z,’{—Zk)(Z,’c—Zk) + Ry
i=1

d) Estimate the cross cov. between - A
X (-). Z,

T
=2 Z (Xk )(Zk z )
e) Meas. update of state estimate done using normal KF

[Zk :szpz_1
Xk(+):Xk(—)+Ek[Zk _Zk]
Pk('l'):Pk(_)_KszKkT
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Comment

e System and meas. equations are
X, :f(xk »Wk)
Z, = h(xk 9Vk)
— Then

.
Xp =X wy Vk]

Xi(+)=[EX, 0 o]

T

(P(+) 0 O]
Ri(+)=| 0 Q0 0
0 0 Ry

— Use the same process as before
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