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Overview
 

• wavelets are analysis tools mainly for 

– time series analysis (focus of this tutorial) 

– image analysis (will not cover) 

• as a subject, wavelets are 

– relatively new (1983 to present) 

– synthesis of many new/old ideas 

– keyword in 10, 558+ articles & books since 1989 

(2000+ in the last year alone) 

• broadly speaking, have been two waves of wavelets 

– continuous wavelet transform (1983 and on) 

– discrete wavelet transform (1988 and on) 
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Game Plan
 

• introduce subject via CWT 

• describe DWT and its main ‘products’ 

– multiresolution analysis (additive decomposition) 

– analysis of variance (‘power’ decomposition) 

• describe selected uses for DWT 

– wavelet variance (related to Allan variance) 

– decorrelation of fractionally differenced processes 

(closely related to power law processes) 

– signal extraction (denoising) 
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What is a Wavelet?
 

• wavelet is a ‘small wave’ (sinusoids are ‘big waves’) 

• real-valued ψ(t) is a wavelet if 

1. integral of ψ(t) is zero:
 ∞

 ψ(t) dt = 0  −∞

2. integral of ψ2(t) is unity:
 ∞ 

 ψ
2(t) dt = 1  −∞

(called ‘unit energy’ property) 

• wavelets so defined deserve their name because 

– #2 says we have, for every small E > 0,  
� T
ψ2(t) dt < 1 − E,−T 

for some finite T (might be quite large!) 

– length of [−T, T  ] small compare to [−∞, ∞] 

– #2 says ψ(t) must be nonzero somewhere 

– #1 says ψ(t) balances itself above/below 0 

• Fig. 1: three wavelets 

• Fig. 2: examples of complex-valued wavelets 
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Basics of Wavelet Analysis: I
 

• wavelets tell us about variations in local averages 

• to quantify this description, let x(t) be a ‘signal’ 

– real-valued function of t 

– will refer to t as time (but can be, e.g., depth) 

• consider average value of x(t) over [a, b]: 

1 � b 
x(u) du ≡ α(a, b)

b − a a

• reparameterize in terms of λ & t 

1 � λ 

  t+
A(λ, t) ≡ α(t − λ, t  + λ) =  2 x(u) du2 2 λ t−λ

2 

– λ ≡ b − a is called scale 

– t = (a + b)/2 is center time of interval 

• A(λ, t) is average value of x(t) over scale λ at t 
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Basics of Wavelet Analysis: II
 

• average values of signals are of wide-spread interest 

– hourly rainfall rates 

– monthly mean sea surface temperatures 

– yearly average temperatures over central England 

– etc., etc., etc. (Rogers & Hammerstein, 1951) 

• Fig. 3: fractional frequency deviates in clock 571 

– can regard as averages of form [t− 1, t + 1 ]2 2

– t is measured in days (one measurment per day) 

– plot shows A(1, t) versus integer t 

– A(1, t) = 0  ⇒ master clock & 571 agree perfectly 

– A(1, t) < 0 ⇒ clock 571 is losing time 

– can easily correct if A(1, t) constant 

– quality of clock related to changes in A(1, t) 
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Basics of Wavelet Analysis: III 

• can quantify changes in A(1, t) via 

D(1, t  −
1 )  A(1, t)  A(1, t   1)
 2 ≡ − −
=
 

� 1
2 

1

� 1t+
 t 

x(u) du −
 

−2
3 x(u) du,
t−
 t2 −
2 

or, equivalently,
 

D(1, t) =  A(1, t  +
1
 )  A(1, t  
1
 )
2
 2
� t+1 

− −� t 
= x(u) du − x(u) du 

t t−1 

• generalizing to scales other than unity yields 

D(λ, t) ≡ A(λ, t +
 λ) 2
 − A(λ, t − λ)
2

1 � t+λ 1 � t 
= x(u) du  x(u) du 
λ t

−
λ t−λ

• D(λ, t) often of more interest than A(λ, t) 

• can connect to Haar wavelet: write � ∞ 
D(λ, ˜t) =  ψλ,t(u)x(u) du −∞ 

with  
˜

−1/λ, t − λ ≤ u < t; 
ψλ,t(u) 


≡ 

 
1/λ, t ≤ u < t +  λ;  0, otherwise. 
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Basics of Wavelet Analysis: IV 

• specialize to case λ = 1 and t = 0:  

˜

 −1, −1 ≤ u < 0;
 

ψ1,0
 (u
)  
 

≡ 1, 0 ≤ u < 1;
 0, otherwise. 
 Hcomparison to ψ (u) yields 
 ˜ Hψ1,0(u) = 
  

√
2ψ (u
)
 

• Haar wavelet mines out info on difference between 

unit scale averages at t = 0 via � ∞ H Hψ (u)x(u) du ≡ W (1, 0)−∞ 

• Hto mine out info at other t’s, just shift ψ (u):  
Hψ

−√1 , t− 1 ≤ u < t;2
H H 1 1,t(u)  


≡ ψ (u−t); i.e., ψ1,t(u) =  

 
, t ≤  √ u < t + 1; 2 0, otherwise
 

Fig. 4: top row of plots 

• to mine out info about other λ’s, form  −√1   , t− ≤  λ u < t;
1
 u− t
H 2λ


ψλ,t(u √
 H
 ) ≡ ψ   =
 
 

√1
 ,
 t ≤ u < t + λ;

λ λ
  2λ
 0, otherwise.
 

Fig. 4: bottom row of plots 
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Basics of Wavelet Analysis: V 

• H can check that ψλ,t(u) is a wavelet for all λ & t 

• H use ψλ,t(u) to obtain 

H  
�

≡ ∞ HW (λ, t) ψ  
 λ,t(u)x(u) du ∝ D(λ, t)−∞

left-hand side is Haar CWT 

• can do the same with other wavelets: 

 1 u  t 
W (λ, t) ≡ 

� ∞
ψλ,t(u)x(u) du, where ψλ,t(u) 

 −  
−∞ 

≡ √ ψ 
λ


λ 

 

left-hand side is CWT based on ψ(u) 

• fdG Mhinterpretation for ψ (u) and ψ (u) (Fig. 1): 

differences of adjacent weighted averages 
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Basics of Wavelet Analysis: VI
 

• basic CWT result: if ψ(u) satisfies admissibility con

dition, can recover x(t) from its CWT: 

1 
� �  

t ∞ − ∞ 1 u 
x  


du

 
dλ 

(t) =  W (λ, t)  ψ ,
C 0  2
ψ 

  −∞ √
λ


λ
 

   
λ

where Cψ is constant depending just on ψ
 

• conclusion: W (λ, t) equivalent to x(t) 

• can also show that 
� ∞ 

 2
1  dλ 

x (t) dt = 
 � ∞ � ∞

W 2(λ, t) dt
 

−∞ C 0  2
ψ

−∞ λ

– LHS called energy in x(t) 

– RHS integrand is energy density over λ & t 

• Fig. 3: Mexican hat CWT of clock 571 data 
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Beyond the CWT: the DWT
 

• critique: have transformed signal into an image 

• can often get by with subsamples of W (λ, t) 

• leads to notion of discrete wavelet transform (DWT) 

– can regard as dyadic ‘slices’ through CWT 

– can further subsample slices at various t’s 

• DWT has appeal in its own right 

– most time series are sampled as discrete values 

(can be tricky to implement CWT) 

– can formulate as orthonormal transform
 

(facilitates statistical analysis)
 

– approximately decorrelates certain time series 

(including power law processes) 

– standardization to dyadic scales often adequate 

– can be faster than the fast Fourier transform! 

• will concentrate on DWT for remainder of tutorial 
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Overview of DWT
 

• let X = [X0, X1, . . . , XN 1]
T be observed time series −

(for convenience, assume N integer multiple of 2J0) 

• let W be N × N orthonormal DWT matrix 

• W = WX is vector of DWT coefficients 

• orthonormality says X = WTW, so  X ⇔ W 

• can partition W as follows:  
W1 


 ... 


W =
 

  W J0
 


VJ


0
 

 

• W j
j contains Nj = N/2  wavelet coefficients 

– related to changes of averages at scale τ j 1 
j = 2 −

(τj is jth ‘dyadic’ scale) 

– related to times spaced 2j units apart 

• V contains N = N/2J0 
J0 J0 scaling coefficients 

– related to averages at scale λJ0 = 2J0 

– related to times spaced 2J0 units apart 
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Example: Haar DWT
 

• Fig. 5: W for Haar DWT with N = 16  

– first 8 rows yield W1 ∝ changes on scale 1
 

– next 4 rows yield W2 ∝ changes on scale 2
 

– next 2 rows yield W3 ∝ changes on scale 4
 

– next to last row yields W4 ∝ change on scale 8
 

– last row yields V4 ∝ average on scale 16
 

• Fig. 6: Haar DWT coefficients for clock 571
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DWT in Terms of Filters 

• filter X0, X1, . . . , XN to obtain −1 

L� j−1 

2j/2
Wj,t ≡
 
J 
hj,lXt l mod N, t = 0, 1, . . . , N  − − 1 

l=0 

where hj,l is jth level wavelet filter
 

– note: circular filtering 

• subsample to obtain wavelet coefficients: 

Wj,t = 2j/2
W� j j,2 (t+1) 1, t = 0, 1, . . . , Nj − 1,−

where Wj,t is tth element of Wj 

• Figs. 7 & 8: Haar, D(4), C(6) & LA(8) wavelet filters 

• jth wavelet filter is band-pass with pass-band [ 1 1
j+1 , j ] 2 2

• note: jth scale related to interval of frequencies 

• similarly, scaling filters yield VJ0 

• Figs. 9 & 10: Haar, D(4), C(6) & LA(8) scaling filters 

• J 1
0th scaling filter is low-pass with pass-band [0,

2J0+1 ] 

13
 



Pyramid Algorithm: I
 

• can formulate DWT via ‘pyramid algorithm’ 

– elegant iterative algorithm for computing DWT 

– implicitly defines W 

– computes W = WX using O(N) multiplications 

∗ ‘brute force’ method uses O(N 2) 

∗ FFT algorithm uses O(N log2 N) 

• algorithm makes use of two basic filters 

– wavelet filter hl of unit scale hl ≡ h1,l 

– associated scaling filter gl 
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The Wavelet Filter: I
 

• let hl, l  = 0, . . . , L− 1, be a real-valued filter 

– L is filter width so h0 = 0 &  hL−1 = 0  

– L must be even 

– assume hl = 0 for l < 0 &  l ≥ L 

• hl called a wavelet filter if it has these 3 properties 

1. summation to zero: 

L

l

J−1 
hl = 0  

=0 

2. unit energy: 
LJ−1 
h2 
l = 1  

l=0 

3. orthogonality to even shifts: 

LJ−1 ∞
hlhl+2n = 

J 
hlhl+2n = 0  

l=0 l=−∞ 

for all nonzero integers n 

• 2 & 3 together called orthonormality property 
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The Wavelet Filter: II
 

• transfer & squared gain functions for hl: 

LJ−1 − i2πfl H(f ) ≡ hle & 
l

H(f ) ≡ |H(f)|2
=0 

• can argue that orthonormality property equivalent to 

H(f) +  H(f + 1) = 2 for all f2

• Fig. 11: H(f) for Daubechies wavelet filters 

– L = 2 case is Haar wavelet filter 

– filter cascade with averaging & differencing filters 

– high-pass filter with pass-band [1 , 1 ]4 2

– can regard as half-band filter 
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The Scaling Filter: I
 

• scaling filter: gl ≡ (−1)l+1hL−1−l
 

– reverse hl & flip sign of every other coefficient 

– e.g.: h0 = √1 & h1 = −√1 ⇒ g 1
0 = g1 = 2 2 

√
2 

– gl is ‘quadrature mirror’ filter for hl 

• properties of hl imply gl has these properties: 
√ 

1. summation to ± 2, so will assume
 

LJ−1 
 
gl =

√
2 

l=0 

2. unit energy: 
LJ−1 
g 2 
l = 1

l=0 

3. orthogonality to even shifts: 

L

l

J−1 ∞
glgl+2n = glgl+2n = 0  

=0 l=

J 
−∞ 

for all nonzero integers n 

4. orthogonality to wavelet filter at even shifts: 

LJ−1 ∞
glhl+2n = 

J 
glhl+2n = 0  

l=0 l=−∞ 

for all integers n 
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The Scaling Filter: II 

• transfer & squared gain functions for gl: 

L−1 
 G(f ) ≡ 

J
g −i2πfl
le & G(f ) ≡ |G(f ) 2
 

l=0 
|

• can argue that G(f) =  H(f −
1 )
 2

– have G(0) = H(−
1
 ) =  2
 H(
1
 ) &  2
 G(
1
 ) =  2
 H(0)
 

– since hl is high-pass, gl must be low-pass
 

– low-pass filter with pass-band [0,
 1 ]
 4

– can also regard as half-band filter 

• orthonormality property equivalent to 

G(f)+  G(f +
1 ) = 2  or  H(f)+  G(f) = 2 for all f
 2
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Pyramid Algorithm: II
 

• define V0 ≡ X and set j = 1 
  

• input to jth stage of pyramid algorithm is Vj−1 

– Vj−1 is full-band
 

– related to frequencies [0, 1
 
2j ] in  X 

• filter with half-band filters and downsample: 

L−1 
Wj,t ≡ 

J
hlVj−1,2t+1−l mod Nj−1 

l=0 
LJ−1 

Vj,t ≡ glVj−1,2t+1−l mod Nj−1, 
l=0 

t = 0, . . . , Nj − 1 

• place these in vectors Wj & Vj 

– W are wavelet coefficients for scale τ = 2j−1 
j j 

– Vj are scaling coefficients for scale λj = 2j 

• increment j and repeat above until j = J0 

• yields DWT coefficients W1, . . . ,WJ0,VJ0 
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Pyramid Algorithm: III
 

• can formulate inverse pyramid algorithm 

(recovers Vj from −1 Wj and Vj) 

• algorithm implicitly defines transform matrix W 

• partition W commensurate with Wj: 
 
W1
 


 
W1
 




  W2
 

W   
W 

 2
 
.=
 

    
J0 

 parallels W
 =
 

 ..
 .  .   .
 
 W W  J   


0

 VJ0 VJ0 

• rows of Wj use jth level filter hj,l with DFT 

j
1

−2

H(2j− f)
 
� 
G(2lf)
 

l=0 

(hj,l has Lj = (2j − 1)(L − 1) + 1 nonzero elements) 

• Wj is Nj ×N matrix such that 

W WT
j = WjX and Wj j = INj 
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Two Consequences of Orthonormality 

• multiresolution analysis (MRA) 

J0 J0
X = WTW = 

J WT T
j Wj + VJ VJ0 0 

j
≡ 

J Dj + SJ0 
=1 j=1 

– scale-based additive decomposition 

– Dj’s & SJ0 called details & smooth 

• analysis of variance 

– consider ‘energy’ in time series: 

N
IXI2 = XTX = 

t

J−1 
X2 
t 

=0 

– energy preserved in DWT coefficients: 

IWI2 = IWXI2 = XTWTWX = XTX = IXI2

– since W1, . . . ,WJ0,VJ0 partitions W, have 

J0
IWI2 = W 2 2

j + VJ0 , 
j

J 
=1 

I I I I

leading to analysis of sample variance: 

N− J0
2 1 

J1 2 1 J 2 1 ≡ − I I  I I2 − 2
σ̂ (Xt X) = Wj + VJ0 X

 
N t=0 N j=1 N

 

– scale-based decomposition (cf. frequency-based) 
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Variation: Maximal Overlap DWT
 

• can eliminate downsampling and use 

1 L� j−1

Wj,t ≡ hj,lXt l mod N, t = 0, 1, . . . , N 1 
2j/2 

l

J 
=0 

− −

to define MODWT coefficients W� j (& also V�j) 

• unlike DWT, MODWT is not orthonormal 

(in fact MODWT is highly redundant) 

• like DWT, can do MRA & analysis of variance: 

J

IXI2 =
J 0

IW
j

�
jI2 + IV�J0I2 

=1 

• unlike DWT, MODWT works for all samples sizes N 
(i.e., power of 2 assumption is not required) 

– if N is power of 2, can compute MODWT 

using O(N log2 N) operations 

(i.e., same as FFT algorithm) 

– contrast to DWT, which uses O(N) operations 

• Fig. 12: Haar MODWT coefficients for clock 571 

(cf. Fig. 6 with DWT coefficients) 
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Definition of Wavelet Variance
 

• let Xt, t = . . . ,−1, 0, 1, . . . ,  be a stochastic process 

• run Xt through jth level wavelet filter: 

L

Wj,t ≡ 
J j−1 

h̃j,lXt l, t = . . . ,−1, 0, 1, . . . ,  
l=0 

−

which should be contrasted with 

L

W� j−1 

j,t ≡ 
J 
h̃j,lXt l mod N, t = 0, 1, . . . , N  − 1 

l=0 
−

• definition of time dependent wavelet variance 

(also called wavelet spectrum): 

ν2 
X,t(τj) ≡ var {Wj,t},
 

assuming var {Wj,t} exists and is finite
 

• ν2 
X,t(τj) depends on τj and t 

• will consider time independent wavelet variance: 

ν2 
X(τj) ≡ var {Wj,t} 

(can be easily adapted to time varying situation) 
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Rationale for Wavelet Variance 

• decomposes variance on scale by scale basis 

• useful substitute/complement for spectrum 

• useful substitute for process/sample variance 

24
 



Variance Decomposition
 

• suppose Xt has power spectrum SX (f ): 
� 1/2  

SX (f ) df = var  {Xt };−1/2
  

i.e., decomposes var {Xt } across frequencies f
 

– involves uncountably infinite number of f ’s 

– SX (f ) ∆f ≈ contribution to var {Xt } due to f ’s 
in interval of length ∆f centered at f 

• wavelet variance analog to fundamental result: 

J ∞
ν2 
X (τj ) = var  {Xt 

j =1 
}

i.e., decomposes var {Xt } across scales τj 

– recall DWT/MODWT and sample variance 

– involves countably infinite number of τj ’s 

– ν 2 
X (τj ) contribution to var {Xt } due to scale τj 

– νX (τj ) has same units as Xt (easier to interpret) 
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Spectrum Substitute/Complement
 

• ˜because hj,l ≈ bandpass over [1/2j+1 , 1/2j], 

1/2j 

ν2 
X (τj) 

�
≈ 2 +1 SX (f ) df 

1/2j

• if SX (f) ‘featureless’, info in ν2 
X (τj) ⇔ info in SX (f ) 

• ν2 
X (τj) more succinct: only 1 value per octave band 

• example: S α
X (f ) ∝ |f | , i.e., power law process 

– can deduce α from slope of log SX (f ) vs. log f 

– implies ν2 
X (τj) ∝ τj−α 

−1 approximately 

– can deduce α from slope of log ν2 
X (τj) vs. log τj 

– no loss of ‘info’ using ν2 
X (τj) rather than SX (f) 

• with Haar wavelet, obtain pilot spectrum estimate 

proposed in Blackman & Tukey (1958) 
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Substitute for Variance: I
 

• can be difficult to estimate process variance 

• ν2
X(τj) useful substitute: easy to estimate & finite 

• let µ = E{X 2
t} be known, σ = var  {Xt} unknown 

• can estimate σ2 using 

1 NJ−1 
σ̃2 ≡ (Xt − µ)2 

N t=0 

• estimator above is unbiased: E{σ̃2} = σ2

• if µ is unknown, can estimate σ2 using 

1 N2 
−1 

σ̂ ≡ 
J

(Xt − X)2 

N t=0 

• there is some (non-pathological!) Xt such that 

E{σ̂2} 
< E

σ
2

for any gvien E > 0 &  N ≥ 1
 

• σ̂2 can badly underestimate σ2! 

• example: power law process with −1 < α < 0 
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Substitute for Variance: II
 

• Q: why is wavelet variance useful when σ2 is not? 

• replaces ‘global’ variability with variability over scales 

• if Xt stationary with mean µ, then 

Lj−J 1 Lj−1 
˜ { ˜E{W j,t} = hj,lE Xt−l} = µ 

J 
hj,l = 0  

l=0 l=0 

˜because
 
l hj,l = 0  

• E{W j,t} known, so can get unbiased estimator of 

var {W j,t} = ν2 
X (τj) 

• certain nonstationary Xt have well-defined ν2 
X (τj) 

• example: power law processes with α ≤ −1 

(example of process with stationary increments) 
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Estimation of Wavelet Variance: I 

• can base estimator on MODWT of X0, X1, . . . , XN−1: 

L −1 � j
˜Wj,t ≡ 

J 
hj,lXt l mod N, t = 0 , 1, . . . , N  − − 1 

l=0 

(DWT-based estimator possible, but less efficient) 

• recall that 

Lj−1 

 ˜Wj,t ≡ 
J 
hj,lXt−l, t = 0 , ±1, ±2, . . .  

l=0 

so W�j,t = W j,t if mod not needed: Lj − 1 ≤ t < N  

• if N − Lj ≥ 0, unbiased estimator of ν2 
X (τj) is  

1 NJ−1 
2 1 N

 
J−1 2

ν̂ W� 2X (τj) ≡ j,t = Wj,t,N − Lj + 1  t=Lj M−1 j t=Lj−1
 

where Mj ≡ N − Lj + 1 
  

• can also construct biased estimator of ν2 
X (τj): 

LN
2 1 −1 1 j−2 N−1 2
ν̃X (τj) ≡ 

J
W

 � 2 J � 2 = W
N j,t N j,t + Wj,t

 
t=0 t=0 t=L

J
j−1 

1st sum in parentheses influenced by circularity 
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Estimation of Wavelet Variance: II
 

• biased estimator unbiased if {Xt} white noise 

• biased estimator offers exact analysis of σ̂2; 

unbiased estimator need not 

• biased estimator can have better mean square error 

(Greenhall et al., 1999; need to ‘reflect’ Xt) 
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Statistical Properties of ν̂X 
2 (τj) 

• suppose {W j,t} Gaussian, mean 0 & spectrum Sj(f ) 

• suppose square integrability condition holds: 

Aj  
�

≡ 1/2 
S2
j (f) df < ∞ & Sj(f) > 0 −1/2 

(holds for power law processes if L large enough) 

• can show ν̂2
X (τj) asymptotically normal with 

mean ν2 
X (τj) & large sample variance 2Aj/Mj 

• can estimate Aj and use with ν̂2 
X (τj) 

to construct confidence interval for ν2 
X (τj) 

• example 

(0)
– Fig. 13: clock errors Xt ≡ Xt along with 

(i) (i 1) (i 1)
differences Xt ≡ Xt 

− − Xt
−
−1 for i = 1, 2 

– Fig. 14: ν̂2
X (τj) for clock errors 

– Fig. 15: ν̂2 (τj) for Y t ∝ (1) 
Y Xt 

– Haar ν̂2 (τ 2 
Y j) related to Allan variance σY (2, τj):

ν2 (τj) =  1σ2 
Y  (2 j)2 Y , τ
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Decorrelation of FD Processes 

• Xt ‘fractionally differenced’ if its spectrum is 

σ
2
 
E
 SX(f ) = 
  ,|2 sin(πf )|2δ

where σE

2 > 0 and −1
< δ < 
1


2
 2
 

• note: for small f , have SX(f ) ≈ C/|f |2δ; 
i.e., power law with α = −2δ 

• if δ = 0, FD process is white noise 

• if 0 < δ < 
1 , FD stationary with ‘long memory’
 2

• can extend definition to δ ≥
1 
2 

– nonstationary 1/f type process 

– also called ARFIMA(0,δ,0) process 

• Fig. 16: DWT of simulated FD process, δ = 0.4 

(sample autocorrelation sequences (ACSs) on right) 
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DWT as Whitening Transform
 

• sample ACSs suggest Wj ≈ uncorrelated 

• since FD process is stationary, so are Wj 

(ignoring terms influenced by circularity) 

• Fig. 17: spectra for Wj, j = 1, 2, 3, 4 

• Wj & Wj , j = j� �, approximately uncorrelated 

(approximation improves as L increases) 

• DWT thus acts as a whitening transform 

• lots of uses for whitening property, including: 

1. testing for variance changes 

2. bootstrapping time series statistics 

3. estimating δ for stationary/nonstationary 

fractional difference processes with trend 
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Estimation for FD Processes: I 

• extension of work by Wornell; McCoy & Walden 

• problem: estimate δ from time series Ut such that 

Ut = Tt + Xt
 

where
 

– Tt ≡  rj=0 a
j

jt
 is polynomial trend 

– Xt is FD process, but can have δ ≥ 1 
2 

• DWT wavelet filter of width L has 

embedded differencing operation of order L/2 

• if L ≥ r + 1, reduces polynomial trend to 0 2 

• can partition DWT coefficients as 

W = Ws + Wb + Ww 

where 

– Ws has scaling coefficients and 0s elsewhere 

– Ws has boundary-dependent wavelet coefficients 

– Ww has boundary-independent wavelet coefficients 
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Estimation for FD Processes: II
 

• since U = WT W, can write 

 U = WT (W T
s + Wb) +  W Ww ≡ T � + X �

• Fig. 18: example with fractional frequency deviates 

• can use values in Ww to form likelihood: 

N 2 2�J0 �j
� 
 1 −W � /(2σ )j  e j,t+L −1L(δ, σ2

E ) ≡   j
 1/2

j=1 t=1 2πσ2 
j 

where 

� 2 

≡ 1/2 
σ2 σE
j −1/2 

Hj(f ) df ;|2 sin(πf )|2δ
 

and Hj(f) is squared gain for hj,l
 

• ˆleads to maximum likelihood estimator δ for δ 

• works well in Monte Carlo simulations 

.• ˆget δ = 0.39 ± 0.03 for fractional frequency deviates 
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DWT-based Signal Extraction: I
 

• DWT analysis of X yields W = WX 

• DWT synthesis X = WT W yields 

– multiresolution analysis (MRA) 

– estimator of ‘signal’ D hidden in X:
 

∗ modify W to get W�
 

∗ use W� to form signal estimate:
 

 D � ≡ WTW� 

• key ideas behind wavelet-based signal estimation 

– DWT can isolate signals in small number of Wn’s 

– can ‘threshold’ or ‘shrink’ Wn’s 

• key ideas lead to ‘waveshrink’ 

(Donoho and Johnstone, 1995) 
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DWT-based Signal Extraction: II
 

• thresholding schemes involve 

1. computing W ≡ WX 

2. defining W(t) as vector with nth element 

(t) 

 0, if 
W n = 

|Wn| ≤ δ;  some nonzero value,
 otherwise,

where nonzero values are yet to be defined 

3. estimating D via
D�(t) ≡ WT W(t)

• simplest scheme is ‘hard thresholding:’
 

W (ht) n = 

 0, if |Wn| ≤ δ;  Wn,
 otherwise.

Fig. 19: solid line (‘kill/keep’ strategy) 

• alterative scheme is ‘soft thresholding:’ 

W (st) n = sign {Wn} (|Wn| − δ)+ ,

where  +1, if W n > 0;  x, if x 0;

sign {Wn} ≡ 
 0, if Wn = 0;  and (x) + 

 ≥≡ −1, if Wn < 0. 
 0, if x <  0.
 

Fig. 19: dashed line 
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DWT-based Signal Extraction: III
 

• third scheme is ‘mid thresholding:’ 

W (mt) n = sign {Wn} (|Wn| − δ)++ ,

where 
2( W 2δ;

(| n δ)+, if Wn < 
Wn| − δ)++ 

  | | − | |≡  |Wn|, otherwise
 

Fig. 19: dotted line
 

• Q: how should δ be set? 

• A: universal’ threshold (Donoho & Johnstone, 1995) 

(lots of other answers have been proposed) 

– specialize to model X = D + E, 

where E is Gaussian white noise with variance σ2 
E 

– ‘universal’ threshold: δU 
√ ≡ [2σ2 

E log(N)] 

– rationale for δ : U
∗ suppose D = 0 & hence W is white noise also 

∗ as N → ∞, have 

P 
 
max 

 
|Wn| ≤ δU → 1 

n 

so all W(ht) = 0 with high probability 

∗ will estimate correct D with high probability 
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DWT-based Signal Extraction: IV 

• can estimate σ2 
E using median absolute deviation (MAD): 

median {|W1,0
σ

|, |W1,1|, . . . , |W N 

ˆ(mad) 

|}
≡ 

1, 12 − ,
0.6745
 

where W1,t’s are elements of W1
 

• Fig. 20: application to NMR series 

• has potential application in dejamming GPS signals 

(with roles of ‘signal’ and ‘noise’ swapped!) 
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Web Material and Books 

• Wavelet Digest 

http://www.wavelet.org/ 

• MathSoft’s wavelet resource page 

http://www.mathsoft.com/wavelets.html 

• books 

– R. Carmona, W.–L. Hwang & B. Torrésani (1998),
 

Practical Time-Frequency Analysis, Academic
 

Press
 

– S. G. Mallat (1999), A Wavelet Tour of Signal
 

Processing (Second Edition), Academic Press
 

– R. T. Ogden (1997), Essential Wavelets for Sta

tistical Applications and Data Analysis, Birkhäuser 

– D. B. Percival & A. T. Walden (2000), Wavelet
 

Methods for Time Series Analysis, Cambridge
 

University Press (will appear in July/August)
 

http://www.staff.washington.edu/dbp/wmtsa.html 

– B. Vidakovic (1999), Statistical Modeling by Wavelets, 

John Wiley & Sons. 
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Software 

• Matlab 

– Wavelab (free): 

http://www-stat.stanford.edu/~wavelab 

– WaveBox (commercial): 

http://www.toolsmiths.com/ 

• Mathcad Wavelets Extension Pack (commercial): 

http://www.mathsoft.com/mathcad/ebooks/wavelets.asp 

• S-Plus software 

– WaveThresh (free): 

http://lib.stat.cmu.edu/S/wavethresh 

– S+Wavelets (commercial): 

http://www.mathsoft.com/splsprod/wavelets.html 
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