

Silicon spintronics

Ron Jansen

S. Sharma, A. Spiesser, K. R. Jeon, S. Iba, H. Saito, S. Yuasa.

National Institute of Advanced Industrial Science and Technology (AIST) Spintronics Research Center Tsukuba, Japan

> In collaboration with: S.P. Dash, Chalmers University of Technology, Göteborg, Sweden J.C. Le Breton, FOM, Utrecht, The Netherlands A.M. Deac, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany B.C. Min, KIST, Seoul, Korea S.C. Shin, KAIST, Daejeon and DGIST, Daegu, Korea B.J. van Wees, University of Groningen, Groningen, The Netherlands

• IEEE Magnetics Society

Home Page: www.ieeemagnetics.org

- 3000 full members
- 300 student members

• The Society

- Conference organization (INTERMAG, MMM, TMRC, etc.)
 - Student support for conferences
 - Large conference discounts for members
 - Graduate Student Summer Schools
 - Local chapter activities
 - Distinguished lecturers
 - IEEE Transactions on Magnetics
 - IEEE Magnetics Letters
- Online applications for IEEE membership: www.ieee.org/join

- 360,000 members

- IEEE student membership / IEEE full membership

Issues in computing based on charge

- 1) Concerns about continuation of scaling down
- 2) <u>Heat</u> generated by electronic components limits performance
- 3) Computing is increasing fraction of world's <u>energy</u> consumption

 \Rightarrow Need for alternative, low power solutions

Semiconductor Spintronics

a new technology based on spin

Combining the best of both worlds

Computer hierarchy & spin

Courtesy of K. Ando

Computer hierarchy & spin

Courtesy of K. Ando

Proposed spin-based device and systems

Spin transistors

Datta, S. & Das, B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665-667 (1990).

Sugahara, S. & Tanaka, M. A spin metal-oxide-semiconductor field-effect transistor using half-metallic-ferromagnet contacts for the source and drain. Appl. Phys. Lett. 84, 2307-2309 (2004).

Tanaka, M. & Sugahara, S. MOS-Based Spin Devices for Reconfigurable Logic. IEEE Trans. Electr. Dev. 54, 961-976 (2007).

Sugahara, S. & Nitta, J. Spin-Transistor Electronics: An Overview and Outlook. Proc. IEEE 98, 2124-2154 (2010).

Appelbaum, I. & Monsma, D. J. Transit-time spin field-effect transistor. Appl. Phys. Lett. 90, 262501 (2007).

Roy, A. M., Nikonov, D.E. & Saraswat, K. C. Conductivity mismatch and voltage dependence of magnetoresistance in a semiconductor spin injection device. J. Appl. Phys. 107, 064504 (2010).

Gao, Y., Low, T., Lundstrom, M. S. & Nikonov, D. E. Simulation of spin field effect transistors: Effects of tunneling and spin relaxation on performance. J. Appl. Phys. 108, 083702 (2010).

Spin diodes

Flatté, M. E. & Vignale, V. Unipolar spin diodes and transistors. Appl. Phys. Lett. 78, 1273-1275 (2001).

Flatté, M. E., Yu, Z. G., Johnston-Halperin, E. & Awschalom, D. D. Theory of semiconductor magnetic bipolar transistors. Appl. Phys. Lett. 84, 4740-4742 (2003).

Castelano, L. K. & Sham, L. J. Proposal for efficient generation of spin-polarized current in silicon. Appl. Phys. Lett. 96, 212107 (2010).

Rüth, M., Gould, C. & Molenkamp, L. W. Zero field spin polarization in a two-dimensional paramagnetic resonant tunneling diode. Phys. Rev. B 83, 155408 (2011).

Spin circuits and spin logic

Tanamoto, T., Sugiyama, H., Inokuchi, T., Marukame, T., Ishikawa, M., Ikegami, K. & Saito, Y. Scalability of spin field programmable gate array: A reconfigurable architecture based on spin metal-oxide-semiconductor field effect transistor. J. Appl. Phys. 109, 07C312 (2011).

Dery, H., Dalal, P., Cywiński, L. & Sham, L. J. Spin-based logic in semiconductors for reconfigurable large-scale circuits. *Nature* 447, 573-576 (2007).

Behin-Aein, B., Datta, B., Salahuddin, S. & Datta, S. Proposal for an all-spin logic device with built-in memory. Nature Nano. 5, 266-270 (2010).

Dery, H., Song, Y., Li, P. & Žutić, I. Silicon spin communication. Appl. Phys. Lett. 99, 082502 (2011).

Building blocks of silicon spintronics

Topics

Electrical creation/detection of spin polarization in Si

Creating spin polarization in silicon by heat

Combining electrical and thermal spin currents & Voltage tuning of thermal spin currents

Creation of spin polarization in semiconductors

by electrical injection from a ferromagnetic tunnel contact

Transfer of spins by spin-polarized tunneling

Creates spin accumulation

$$\mathbf{I}_{\mathsf{T}}^{\uparrow} \neq \mathbf{I}_{\mathsf{T}}^{\downarrow}$$

- Spin relaxation in semiconductor

$$\Delta \mu = \mu^{\uparrow} - \mu^{\downarrow}$$

Spin manipulation & detection

Precession of spins in transverse magnetic field (Hanle effect)

Creating spin polarization in silicon at 300 K

AIST

by electrical spin injection from a magnetic tunnel contact

Electrical detection of spin polarization Resistance of tunnel contact is proportional to $\Delta \mu$

Crystalline Fe / MgO tunnel contact

Spintronics with p-type germanium at 300 K Crystalline and Schottky free contacts

Control experiment with Yb or Au nanolayer

Electrical creation of spin polarization in silicon

Spin lifetime and spin precession near a tunnel interface

Spin lifetime in n-type silicon - Hanle vs. ESR

Extrinsic contributions to spin relaxation spin precession in local magnetostatic fields

Inhomogeneous spin precession axis and frequency

Spin relaxation near magnetic tunnel interface

role of ferromagnetic electrode

Injected spins feel presence of the ferromagnet !

 \Rightarrow Apparent reduction of spin lifetime

$$\begin{split} \mathsf{Ni}_{80}\mathsf{Fe}_{20} &\to \ \mu_0\mathsf{M}_{\mathsf{sat}} = 0.9 \ \mathsf{T} \\ \mathsf{Co} &\to \ \mu_0\mathsf{M}_{\mathsf{sat}} = 1.8 \ \mathsf{T} \\ \mathsf{Fe} &\to \ \mu_0\mathsf{M}_{\mathsf{sat}} = 2.2 \ \mathsf{T} \end{split}$$

T = 300 Kp-Si = 4.8 · 10¹⁸ cm⁻³ (B)

Hanle effect and inverted Hanle effect

Hanle, inverted Hanle & anisotropy

Magnitude and scaling of the spin signal

Magnitude of the spin accumulation

Expectation based on standard model for spin resistance

Use Einstein relation: $D = \frac{\mu_e n}{e\left(\frac{\partial n}{\partial E_F}\right)}$ in Ωm^2 in Ωm^2 Resistivity spin-diffusion length

Magnitude of the spin accumulation disagreement between experiment and theory

Theory proposals to explain the disagreement

Localized states in the oxide barrier or at the oxide/semiconductor interface

But, experiments

Magnitude and scaling of spin signal

Magnitude of the spin signal for eV < kT

Control experiment with Ru metal instead of Si

Oxide but no semiconductor \Rightarrow no Hanle signal Thus, signal does not originate from the tunnel oxide

Can we create spin polarization in silicon by <u>heat</u>, instead of charge current ?

Thermal creation of spin polarization in Si New phenomenon: Seebeck spin tunneling

Thermal spin current from ferromagnet to Si Joule heating of Si

p-type Si / AI_2O_3 / $Ni_{80}Fe_{20}$, $T_{base} = 300$ K, Si strip: 4000 x 800 x 3 μ m³

Thermal spin current from ferromagnet to Si Observation of Seebeck spin tunneling

Thermally-induced spin accumulation in Si Scaling with Joule heating power

J.C. Le Breton et al., Nature 475, 82 (2011)

Anisotropy of the Seebeck coefficient

R. Jansen, Proc. SPIE 8813, 88130A (2013)

Origin of the thermal spin current

Spin-polarized tunneling

Tunnel conductance is spin dependent (1971)

Tunnel magnetoresistance at 300 K (1995)

Electrical spin injection (1999 -)

Seebeck spin tunneling

Seebeck coefficient of tunnel contact is spin dependent (Le Breton et al. 2011)

Thermal spin injection (Le Breton et al. 2011)

Tunnel magneto-thermopower (Walter et al. / Liebing et al. 2011)

Electrical detection of Seebeck spin tunneling

Seebeck spin tunneling coefficient

$$\Delta \mu = \left\{ \frac{2 r_s}{R_{tun} + (1 - P_G^2) r_s} \right\} \begin{bmatrix} (P_G) R_{tun} I - (P_L - P_G) S_0 \Delta T \end{bmatrix}$$
electrical thermal

$$S_{st} = \frac{\Delta \mu}{\Delta T} = \left\{ \frac{\left(1 - P_G^2\right) r_s}{R_{tun} + \left(1 - P_G^2\right) r_s} \right\} \left(S_{st}^{\uparrow} - S_{st}^{\downarrow}\right)$$

Jansen, Deac et al. PRB 85, 094401 (2012)

$$\begin{split} S^{\uparrow}_{st} &= -L^{\uparrow}/G^{\uparrow} \\ S^{\downarrow}_{st} &= -L^{\downarrow}/G^{\downarrow} \end{split}$$

Spin-dependent Seebeck coefficient

Charge Seebeck effect

governed by energy derivative of charge conductivity

Seebeck spin tunneling (SST)

Seebeck spin tunneling

Governed by energy derivative of tunnel spin polarization

Sign of the thermal spin current

Control of the sign of the spin polarization by direction of heat flow

Reversing the heat flow \Rightarrow Opposite spin polarization

Sign reversal of thermal spin accumulation

Thermal + electrical spin currents

K.R. Jeon et al. Nature Materials 13, 360 (2014)

Simultaneous thermal & electrical driving force

Thermal & electrical spin current together

Voltage tuning of the thermal spin current

Spin thermoelectrics away from Fermi energy

Conventional thermal spin current near Fermi energy Thermal spin current at finite bias voltage

Tuning of thermal spin current with voltage

Voltage tuning of thermal spin current

Magnitude of thermal spin current is tuned by bias voltage

> Tunneling states with a different $\frac{\partial P}{\partial E}$

n-type Si / MgO / Co₇₀Fe₃₀

Electrical creation & detection of spin polarization in Si using magnetic tunnel contacts

Thermal spin current into Si without a charge tunnel current, by Seebeck spin tunneling

For recent reviews of silicon spintronics, see

R. Jansen, Nature Materials 11, 400 (2012) R. Jansen et al. Semicon. Sci. Technol. 27, 083001 (2012).

Email: ron.jansen@aist.go.jp