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Summary

Introduction — high anisotropy materials and
magnetic recording

The need for atomistic simulations

Static properties — Ising model and MC
simulations

Atomistic simulations
= Model development
= Langevin Dynamics and Monte Carlo methods
= Magnetisation reversal

Applications
= Pump-Probe processes
= Opto-magnetic reversal

= Atomistic model of Heat Assisted Magnetic Recording
(HAMR)
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Media Noise Limitations in Magnetic

Recording SNR ~ 10xlog (B/ o)

GMR Read Inductive D*
Sensor Write Element S O-j cq

Recording Medium

1. Transition position jitter o, limits media noise performance!
2. Key factors are cluster size D* and transition width a.
3. Reducing the grain size runs into the so-called superparamagnetic limit -

information becomes thermally unstable
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Superparamagnetism

The relaxation time of a grain is given by the
Arrhenius-Neel law

1 = f, exp(-AE, /KT)

where f, = 10°s1. and AE is the energy barrier

This leads to a critical energy barrier for
superparamagnetic (SPM) behaviour
AE, = KV, =k, TIn(t_ f,)

where t_ is the ‘measurement time’

= Grains with AE < AE_ exhibit thermal equilibrium (SPM)
behaviour - no hysteresis
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Minimal Stable Grain Size (cubic grains)

KV 1. Time
—=TI.(In(z- f,),o0,H;) =60 2. Temperature
B 3. Anisotropy
Alloy System | Material Anisotropy | Saturation Magnetization : Anisotropy Field Minimum stable grain size
K, (10’erg/cc) M, (emu/cc) H, (kOe) D, (nm)
CoCrPtX 0.20 200-300 15-20 8-10 today
Co-alloy Co 0.45 1400 6.4 8.0
CojPt 2.00 1100 36 4.8
FePd 1.8 1100 33 5.0
L1y-phase FePt 6.6-10 1140 116-175 2.8-3.3 future
CoPt 4.9 800 123 3.6
MnAl 1.7 560 69 5.1
RE-TM Nd,Fe 4B 4.6 1270 73 3.7
SmCos 11-20 910 240-400 2.2-2.7

HO:CZHK-NMS

Write Field is limited by B¢ (2.4T today!)of Recording Head

D. Weller and A. Moser, IEEE Trans. Magn.35, 4423(1999)
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Bit Patterned Media
Lithography vs Self Organization

Lithographically Defined FePt SOMA media

Major obstacle is finding low cost
means of making media.

mAt 1 Tbhpsi, assuming a square bit cell and

equal lines and spaces, 12.5 nm lithography = .
would be required. *6.3+/-0.3 nm FePt particles

DcyDiameterEO'05

mSemiconductor Industry Association
roadmap does not provide such linewidths S. Sun, Ch. Murray, D. Weller, L. Folks, A.

within the next decade. Moser, Science 287, 1989 (2000).
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What we have to deal with

= Lengthscales
= Electronic structure (exchange, anisotropy, etc ...)
= Atomistic — introduces thermodynamics
= Micromagnetic

= [imescales

= 100 femtoseconds — ultrafast processes
nanoseconds — magnetic recording
Seconds (VSM)
Years (thermal stability in recording)
Geological ages (geomagnetism)

= No single model can be expected to do everything
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Overview of models

‘ab-initio’ calculations

= Information on electronic structure and intrinsic magnetic properties

» Restricted to zero K and small humbers of atoms
Atomistic models

= Larger number of atoms (10° to 108)

= Non-zero temperature and ultrafast dynamics

= Still relatively small systems
Micromagnetic models

= System size up to microns

= Non-zero temperature and ultrafast dynamics

= Not good at high temperatures close to T,
Macroscopic models (eg Preisach)

= Very large systems

= Phenomenological models
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Micromagnetics

Around since the pioneering work of William Fuller
Brown in the 1960s

Used for studying non-uniform magnetisation
reversal processes

Since the mid 1980s, significant advances in
modelling techniques

Micromagnetics is now a very mature theory

Large scale calculation — cannot introduce atomic
lengthscale calculation explicitly

Essential approach is to make an approximation to
the exchange valid for long wavelength
magnetisation changes
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Micromagnetic exchange

=T he exchange energy is essentially short ranged and
involves a summation of the nearest neighbours.
Assuming a slowly spatially varying magnetisation the

exchange energy can be written

= |W_dv, with W, = A(Vm)?

exch
(Vm)2 = (Vm,)? + (Vm,)? + (Vm,)?

= The material constant A = ]S2/a for a simple cubic lattice
with lattice constant a. A includes all the atomic level
interactions within the micromagnetic formalism.
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Dynamic behaviour

= Dynamic behaviour of the
magnetisation is based on the Landau-
Lifshitz equation

— —

Si =~ 8 xH,(t) - —Z5 8, x (S, x H, (1))
1+« 1+«

Where v, is the gyromagnetic ratio and «
IS @ damping constant
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Langevin Dynamics (introduces

non-zero temperature)

= Based on the Landau-Lifshitz-Gilbert
equations with an additional stochastic field
term h(t).

= From the Fluctuation-Dissipation theorem, the
thermal field must must have the statistical
properties

<h(®)>=0 <h(O)h,®)>=5(t)5,20k,T /7

= From which the random term at each
timestep can be determined.

= h(t) is added to the local field at each

timestep.
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Typical application of micromagnetics; structure
of the vortex state

S TR Permalloy (Nig,Fe,,) nanodots
« g sogia )/ .= Saturation magnetization:
bl Ly M, =8-10°A/m = 8-102 G
() R JAT
NI = Exchange constant:
K L A= 13.1012)/m = 1.3-10-
MO © erg/cm
S ., b = Anisotropy has been neglected

tim  .» m Radius of 100 nm, thickness of

Circular Dofs of Permalloy, Science 289 (2000) 930 20

—

vortex state
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Micromagnetics (thanks to Werner Scholz, Seagate)

» Effective field H; :
- exchange
- anisotropy
- magnetostatic
- external field

* Find energy
minima by
integration of the
Gilbert equation of
motion
or direct energy
minimization

anisotropy

exchange

3 v .Y
DE L

= easy directions

= parallel spins

od o g CJ
X~y x Hey + 29 &

s

magnetostatic external field

P-4

> rotation

= domains
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Finite Element Approach

e divide particles into finite elements
= triangles, tetrahedrons

e expand J with basis function J;

nodes

5(7() = Zji(l)i (X)

e energy as a function of J,, J, ... Jy

£, 3,..3.)

o effective field

~ 1 8EQJ,, T, dy)
YA aJ,

= effective field on irregular grids
= rigid magnetic moment

at the nodes
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W Scholz et al 3 Magn. Magn. Mater., 266, 155-163 (2003)

saturated state

M/M

“C" state

annihilation field: Equilibrium in nucleation field:
70 kKA/m = 880 Oe = 88 mT TEerafield ersity of /m =62 Oe = 6.2 m'I'16



= Micromagnetics is highly successful with
large scale magnetisation structures
with long-wavelength magnetisation

variations only

= BUT it cannot deal with short
wavelength fluctuations and fails to
predict the Curie Temperature.
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Modelling magnetic properties: The need
for atomistic/multiscale approaches

= Standard approach (Micromagnetics) is based on a
continuum formalism which calculates the
magnetostatic field exactly but which is forced to
introduce an approximation to the exchange valid
only for long-wavelength magnetisation fluctuations.

= Thermal effects can be introduced, but the limitation
of long-wavelength fluctuations means that
micromagnetics cannot reproduce phase transitions.

= The atomistic approach developed here is based on
the construction of a physically reasonable classical
spin Hamiltonian based on ab-initio information.
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Micromagnetic exchange

=T he exchange energy is essentially short ranged and
involves a summation of the nearest neighbours.
Assuming a slowly spatially varying magnetisation the

exchange energy can be written

= |W_dv, with W, = A(Vm)?

exch
(Vm)2 = (Vm,)? + (Vm,)? + (Vm,)?

= The material constant A = ]S2/a for a simple cubic lattice
with lattice constant a. A includes all the atomic level
interactions within the micromagnetic formalism.
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Relation to ab-initio calculations and micromagnetics

Ab-initio calculations are carried out at the electronic
level.

Number of atoms is strictly limited, also zero temperature
formalism.

Atomistic calculations take averaged quantities for
important parameters (spin, anisotropy, exchange, etc)
and allow to work with 10° to 108 spins. Phase transitions
are also allowed.

Micromagnetics does a further average over hundreds of
spins (continuum approximation)

Atomistic calculations form a bridge

= Lecture 1: concentrates on the link to ab-intio calculations —
development of a classical spin Hamiltonian for FePt from ab-initio
calculations and comparison with experiment.

=« Lecture 2: Development of multi-scale calculations- link to
micromagnetics via the Landau-Lifshitz-Bloch (LLB equation).
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Atomistic models and thermodynamics

= Ising model — simplest model of magnetic phase
transtions

= Can calculate thermodynamic properties analytically
= Introduction of the Monte-Carlo technique
= Check of analytical theory vs numerical calculations

= Important demonstration of the computational
physics approach — always test the code!

= Numerical techniques are normally necessary to
investigate complex physical systems.
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Atomic resolution micromagnetics; do we
need a new model?

= Why not use micromagnetics with atomic resolution?
= Micromagnetics is a continuum formalism

= Requirement — exchange MUST reduce to the Heisenberg
form.

= Then, micromagnetic model becomes an atomistic
simulation. BUT

= Very limited; sc lattice, nearest neighbour exchange (cf for FePt ~
5 lattice spacings + exchange is directional + 2-ion anisotropy

leads to complex effects at surfaces.

= Unnecessarily good calculation of magnetostatic field — dipolar
approximation more appropriate + dominance of exchange field
and short timestepping means that it is not necessary to update
the magnetostatic field at every timestep (Berkov).
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Nguyen N. Phuoc et al

Phys. Stat. Sol (b) 244, 4518-21 (2007)
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The Ising model

Consider the case of a magnetic system with infinite anisotropy. Then the spin
values can only take values of +1. Mathematically this is formalised as follows:
For every lattice site 2 = 1. ....... N, there is a (spin) variable ; € {+1,—1}
such that the multispin state is identified by ¢ = (01,09, .........0x ). The
exchange forces which give rise to the ferromagnetic state are very short ranged
and can be taken to involve nearest neighbours only. Consequently the energy of
the system consists of a summation over nearest neighbours (z j)m as well as

over all sites 1.

(1) :—]Z Z 0i0; — BZ@

1 (Ei‘j’)nn

The term proportional to B describes the effect of an external magnetic field
which has the effect of aligning the spin parallel to /3. Note that the Ising model is
not limited to magnetic systems; it is an important model in relation, for example,
to order/disorder transitions in alloys.
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Consider a 2-D square lattice of interacting spins in zero external field (h = 0)
with NV spins and N — o0. The Hamiltonian then takes the form

2) H=>Y Y Jooj,

where the sum runs over 4 nearest neighbours. This problem was solved exactly
by Onsager in 1944, for which he received the Nobel prize. A number of
theoretical approaches have been used, eg graph theory, transfer matrix methods.
Here we just quote the solution for the internal energy,

U 2J 2 2.J
3 — =—Jcoth| =) |14+ =(2tanh? [ =) — 1
© v = —soom () [1+3 (2rann? () 1) mir0)]
with
(4) H = (QSiIlh (ﬂ)) / (cosh2 (£>) :
kT kT
7T /2 d
k1(H) = i

. ?
Jo /1 —H2sin?¢
where k1 is the complete elliptic integral of the first kind. U is non-analytic at a critical temperature defined by

2.J 2J
5 sinh =1 sh =2
(5) sin (k ) : COS (ij ) \/_,

C C

which gives kT, = 2.269.J.
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Heat capacity

x1(H) has a singularity for H — 1, in which limit
- 4

~ln———
g0 | )~ In T
= 70 k As T — T, fromequ.4 H — 1. In this limit, U remains
[
o ) finite, but derivatives diverge. For example, the specific he-
‘TE 60 |- /- at, -
X yd (A) C(T —To) ~—In|1——|
2 S0 g Te
e - The divergence is characteristic of a so-called \ transition
<40 \
30 | NG
: T——
20 | | | I | |

6 4 -2 0 +2 +4 +6
(T=T,)(10° K)
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Mean field theories

e Statistical Mechanical models are normally not amenable to analytical solution
e hence the invention of numerical techniques such as the Monte-Carlo method.

® The Mean Field Theory (MFT) is one of the most common approximate
analytical approaches. A formal derivation of the MFT starts with the

Bogoliubov inequality
(6) F <= Fy+ <H—"Ho >o,

where
o F'is the true free energy of the system corresponding to the Hamiltonian H,

o 'H a trial Hamiltonian dependent on some parameter L, F{ is the

corresponding free energy and
0 <> defines an ensemble average taken in the ensemble defined by H,.
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e H and [ are not known (in closed form).

e We can develop a mean-field approximation to /' by minimising P with respect

to the variational parameter /1.

e (NB This is directly analogous to the variational principle in Quantum

Mechanics).

e This gives F,,,; = miny,, {P}, where F,, s is the mean-field approximation to
the free energy, from which the important thermodynamic quantities can be

calculated.
e Obviously the success of MFT depends on the most appropriate choice of H.

e Generally, in order to make the problem tractable we choose for H a

Hamiltonian with no interactions, which enables calculation of the RHS of eq 6.

THE UNIVERSITYW 8



Ising model MF theory

Consider the Ising model in zero external field, with the Hamiltonian H = —.J Zj@' S;S;, on a lattice of N sites each

with z nearest neighbours. Now, take as the trial Hamiltonian
Ho = —ho Z Si,
1

where h( is termed the mean field. This of course is the Hamiltonian for a paramagnet. For which the free energy and

magnetisation are

(7) Fo = —NEkT In(2 cosh Bho), < S >o= tanh Bhg

We need to evaluate << 'H — 'H > remembering that this is an ensemble average using probabilities determined by

the trial Hamiltonian. This gives

(8) < H—"Ho >o0=

>g(=J Zji SiSj + ho _; Si) exp(Bho >, Si)
2. exp(Bho 3, Si)

The factorisation of the interaction term is possible because H contains only single-site terms. For a translationally
invariant system < S; >0=< S; >0=< S >0., and eq 8 becomes

:—JZ<S@' >0< S >0 ‘|‘hOZ < Si >0

1,7 )

9) < H—"Ho >o=—JzN < S>3 /24 Nho < S >0,

where ZN/2 is the number of bonds in the lattice (avoiding double counting).
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Substituting eq 9 into eq 6 then gives

(10) ® = —~NET In(2cosh Bhg) — JzN < S >3 /24 Nhg < S >0,
and using eq 7

(11) ® — NET In(2cosh Bhy) — JzN(tanh 3hg)? /2 + N hg tanh Bhg.

To minimise we set the derivative to zero, ie

AP
= — N (tanh Bhg) — JzN (tanh Sho)(1 + (tanh 3ho)?)
0
— N tanh Sho + NhoB3(1 + (tanh 3hg)?) = 0.
(12) . ho = zJ tanh Shy.

Eq 12 must be solved self-consistently for /. We can also determine the magnetisation given that
< S >,= tanh Shg (eq 7) which gives hg = zJ < Sy >y,

5.< Sp >o=tanh 8zJ < Sy >,
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Graphical solution

lllustration of the method of
graphical solution. The solid li-
nes are the function y =
tanh 5zJ < Sy > and the
dotted line represents y —<
So >0 .

A solution for non-zero < Sy > exists
if the function y = tanhpzJ <
So > is intersected by the line y =<
So >0, which occurs for T° < T..
At the critical temperature . the gra-

dients at < Sg >¢= 0 are equal, ie

B 0
_a<80>0

= ﬁZJ(l — tanh2 ﬁZJ < Sy >()).

1 tanh B8zJ < 5y >¢

We are in the limit < Sy >0— 0, ie
tanh 8zJ < 5y >¢0— 0.

zJ

-1 = ?
kT,

T. ==zJ/k
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Thermodynamic quantities

s %/

1.0 KT/J
-1.5-
-2.0-

-2.5-:
-3.0
-3.5-
I

4.0
4.5

The figure shows plots of the calculated free energy, heat capacity and
magnetisation in the Mean-Field theory. It can be seen that the free energy is
continuous, but the heat capacity shows a discontinuity at a critical value of

kT /J = 4, consistent with a continuous phase transition. The plot is calculated
for the 2-D case with z = 4, and the critical temperature is consistent with the
earlier expression T, = 2.J / k.
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Calculation of equilibrium properties

= Description of the properties of a system in thermal
equilibrium is based on the calculation of the partition
function Z given by

Z =Y exp(—H(S))/ksT.
o)

where S is representative of the spin system

= If we can calculate Z it is easy to calculate thermal
average properties of some quantity A(S) as follows

<A>=) p(S)A(S) p(8) = Z7 exp(—H(8)/kpT).
S

Where p(S) is the probability of a given spin-state

THE UNIVERSITYW 33



Monte-Carlo method

= It would be possible in principle to do a

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

= However, this is very inefficient since
p(S) is strongly peaked close to
equilibrium.

= A better way is to use ‘importance
sampling’, invented by Metropolis et al

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E
Teller, J. Chem. Phys. 21, 1087 (1953).
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Importance sampling

= We define a transition probability between
states such that the ‘detailed balance
condition is’ obeyed

W W r W r r W W

Wi(S — “1_”} {*}:1'1{_—H{ij_l,.f’"ﬁ'BTJ — H'{_i — ) {'*:{1'1[—H{_ij_l,.f’"ﬁ'BTJ,

= The physics can be understood given that
p(S)=Z"1exp(-H(S)/kgT), ie p(S) does not
change with time at equilibrium.
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Metropolis algorithm

For a given state choose a spin i (randomly or
sequentially), change the direction of the spin, and
calculate the energy change AE.

If AE <0, allow the spin to remain in the new state.
If AE > 0O, choose a uniformly distributed random
number r €[0; 1]. if r < exp(-AE/kgT) allow the spin
to remain in the new state, otherwise the spin
reverts to its original state.

Iterate to equilibrium

Thermal averages reduce to an unweighted
summation over a number (N) of MC moves, eq for
the magnetisation

N
<M >= N‘l_lei
1=
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M vs T for 2-D Ising model (MC calculations of Joe Barker)

i pst

L=10 r—e—

Cnsager

ﬁﬂgﬁiﬁmiﬂﬂlnmnm“

(a) L

Y

10

3

[

g
w A

I:[II]:IIIIli:I::-

] IIIIIIIIII]I[I_ ok

1

(b

20

(d) L

80

M vs T for the 2-D Ising model for systems of different sizes. The results are compared with the Onsager expression

for the magnetisation.

For the case of the 2 — ) Ising model there is an analytical expression (due to Onsager) for the magnetisation.

(13)

M=1{1- [sinh (ln(l + \/5)%)] -

1/8

Fig. 10 shows the variation of magnetisation with temperature for a number of system sizes with the Onsager equation

shown for comparison. The finite size effects lead to a reduction of the ordering temperature and decreased criticality. For

the large system size there is good agreement between the numerical results and the Onsager equation.

THE UNIVERSITYW
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Summary

= Thermodynamic properties of magnetic materials
studied using Ising model
= Analytical and mean-field model
= MC approach for atomistic calculations agrees well with
analytical mode (Onsager)
= In the following we introduce a dynamic approach
and apply this to ultrafast laser processes

= We also investigate the link between ab-initio and
atomistic models.
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Atomistic model of dynamic properties

= Uses the Heisenberg form of exchange

Eexch Z J” ,

j;él

= Spin magnitudes and J values can be
obtained from ab-initio calculations.

= We also have to deal with the magnetostatic
term.

= 3 lengthscales — electronic, atomic and
micromagnetic — Multiscale modelling.
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Model outline

Ab-initio information (spin,
exchange, etc)

|

Classical spin Hamiltonian

|

Magnetostatics

Dynamic response
solved using
Langevin Dynamics
(LLG + random
thermal field term)

Static (equilibrium)
processes can be
calculated using
Monte-Carlo
Methods
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M vs T; static (MC) and dynamic calculations

M

5
0.8

g"w_n
0.6 g

UULI.!]:‘%L"\
0.4 "
] —— M((t) during heating 7,
O M, static (MC values) )
M)
0.2 Wi
II',||I
I'llllllll.
L — _—
250 300 350 400 450 500 550 600

T(K)

= Dynamic values are calculated using Langevin
Dynamics for a heating rate of 300K/ns.

= Essentially the same as MC values.
= O Fast relaxation of the magnetisation (see later)

THE UNIVERSITYW
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How to link atomistic and ab-
initio calculations?

= Needs to be done on a case-by-case basis

= In the following we consider the case of FePt,
which is especially interesting.

= First we consider the ab-initio calculations
and their representation in terms of a
classical spin Hamiltonian.

= The model is then applied to calculations of
the static and dynamic properties of FePt.
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Ab-initio/atomistic model of FePt

= Anisotropy on Pt sites
= Pt moment induced by the Fe

= Treating Pt moment as independent degrees of freedom gives
incorrect result (Low T, and ‘soft’ Pt layers)

= New Hamiltonian replaces Pt moment with moment proportional to
exchange field. Exchange values from ab-initio calcuations.

= Long-ranged exchange fields included in a FFT calculation of
magnetostatic effects

= Langevin Dynamics used to look at dynamic magnetisation reversal
= Calculations of

= Relaxation times

=« Magnetisation vs T
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Disorder to Order Transformation

0 0
@ 50% Fe/50% Pt | After Anneal @ Fre
As Deposited

@ -~

A

Anneal o o
FCC disordered alloy Ordered L1, (ex. FePt)
a=b=c a=b=3.853A=c=3.713A
Small cubic Anisotropy K, partial = KiordoreaS

ra:fraction of a sites occupied by correct atom
r —X
A

(04
y —franti i
Jij yB—fractlon of B sites

THE UNIVERSITYW 44

X A—atom fraction of A

Degree of Chemical Order =S =



FePt exchange

- - ’-" ’
A0 K 0 5 e -10

= Exchange coupling is long ranged in

FePt
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FePt Hamiltonian

Convention: Fe sitesi,j Pt sites k|

THE UNIVERSITYW
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Localisation (ab-initio calculations)

3
PO OO DO --O--B---O---0

N
o

FePt - - - Fe spin moment

14— Pt spin moment

Spin moment (u )
—

s
I
|

.
.
|

0 0.1 0.2 0.3 0.4 0.5
angle (in m units)

To good approximation the Pt moment is found numerically
to be & Exchange field from the Fe
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Thus we take the FePt moment to be given by

§k — = ZJik§i

SFePt [

With Sy = Z‘]ik

Substitution for the Pt moments leads to a Hamiltonian
dependent only on the Fe moments;

THE UNIVERSITY W
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With new effective interactions  J i = Jii T Skt ZJikJ e
k
Single ion anisotropy d° =d, +d5Sie D Iy
k
. . 2 2
2-ion anisotropy (new term)  di =2d,S7p D Jid i
k

And moment u = Hee T Hpt SFePt = Z‘Jik
THE UNIVERSITY'W_
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= All quantities can be determined from
ab-initio calculations

= 2-ion term (resulting from the
delocalised Pt degrees of freedom) is
dominant
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Anisotropy of FePt nanoparticles

1

Thiele: Film ]

Simulation: 6.2nm A

New Hamiltonian replaces Pt 3 i
moment with moment '
proportional to exchange
field from Fe. Gives a 2 ion
contribution to anisotropy

Exchange and K(T=0) values
from ab-initio calculations.

Long-ranged exchange fields | ] t f M'T/MO' BE—
included in a FFT calculation egrietizatian WETIMO)

of magnetostatic effects : :
. . = Good fit to experimental data
Langevin Dynamics or Monte- (Theile and Okamoto)

Carlo approaches = First explanation of origin of

Can caIIwcuI?te experimental power law — results
AW from 2 ion anisotropy
= KvsT

= Dynamic properties THE UNIVERSITYW

Anisotropy K(T)/K(0)

51



Model of magnetic interactions for ordered 3d-5d alloys: Temp.
dependence of equilibrium properties.

Magnetization M(T)/M(0)

0 100 200 300 400 500 600 700 800
Temperature (K)

Reasonable estimate of T. (no fitting parameters)



Ultrafast Laser induced
magnetisation dynamics

= The response of the magnetisation to
femtosecond laser pulses is an important
current area of solid state physics

= Also important for applications such as Heat
Assisted Magnetic Recording (HAMR)

= Here we show that ultrafast processes cannot
be simulated with micromagnetics.

= An atomistic model is used to investigate the
physics of ultrafast reversal.
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Pump-probe experiment

= Apply a heat pulse to the material using a high
energy fs laser.

= Response of the magnetisation is measured
using MOKE

= Low pump fluence — all optical FMR

= High pump fluence — material can be
demagnetised.

= In our model we assume that the laser heats the
conduction electrons, which then transfer energy
into the spin system and lattice.

= Leads to a ‘2-temperature’ model for the
temperature of the conduction electron and
attice
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2 temperature model

laser

Y

electrons [ ==

lattice

\ spins

/

1. photon energy is transferred to electrons

2. energy is exchanged between electrons

and phonons

3. energy dissipates into environment

o0 I ——

Two temperature model: < 800 Ti _
& 700 -

electrons: i’e% = G, — 1)+ Pt f 600 —
2 500 -

lattice: {_';%1—} = Ggld, —1;) E 400 =
300 —

(M. I. Kaganov et al., Sov. Phys. JETP 4, 173 (1957)) 200 'E 'l - '4 'J 'E —

—- perform Langevin dynamics simulation with 1. as temperature of the heat bath
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Atomistic model
= Uses the Heisenberg form of exchange

Eexch Z 'JU ,

j#i

= Dynamics governed by the Landau-
Lifshitz-Gilbert (LLG) equation.

= Random field term introduces the
temperature (Langevin Dynamics).

= Variance of the random field determined
by the electron temperature T,
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Pump-probe simulations —
continuous thin film

1000
— 800
— 600
= 400
— 200

magnetisation
temperature [K]

0 5 10 15 20 25 30 35 40
time, [ps]

= Rapid disappearance of the magnetisation

= Reduction depends on A
THE UNIVERSITYW
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Ultrafast demagnetisation

Normalized remanence
f= b= = o =
N =] (s 4] [{n] [
| |

o
[}
T
|

\

!I}.é‘{[]
At (ps)

= Experiments on Ni (Beaurepaire et al
PRL 76 4250 (1996)

= Calculations for peak temperature of

375K

= Normalised M and T. During

15

Temp (K)

M
z

380

370 A

360 A

350 A

340

330 A

320 A

310 A

300

- 0.750
- 0.745
.—0.740
.—0.735
.—0.730
.—0.725

-0.720

-0.715
[T

0.710

1.0~

0.8

0.6

0.4

0.2

demagnetisation M essentially follows T

0.0

-0.2

THE UNIVERSITYW

—HB—Temp
—0— Mag

t(ps) 58



Opto-magnetic reversal

' 7 7 reak endi
PRL 99, 047601 (2007) PHYSICAL REVIEW LETTERS week ending
5

All-Optical Magnetic Recording with Circularly Polarized Light

C.D. Stanciu,"* E Hansteen," A. V. Kimel."' A. Kirilyuk," A. Tsukamoto,” A. Ttoh,” and Th. Rasing’
Unstitute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
“College of Science and Technology, Nihon University, 7-24-1 Funabashi, Chiba, Japan
(Received 2 March 2007; published 25 July 2007)

We experimentally demonstrate that the magnetization can be reversed in a reproducible manner by a
single 40 femtosecond circularly polarized laser pulse, without any applied magnetic field. This optically
induced ultrafast magnetization reversal previously believed impossible is the combined result of femio-
second laser heating of the magnetic system to just below the Curie point and circulary polarized light
simultaneously acting as a magnetic field. The direction of this opto-magnetic swiiching is determined
only by the helicity of light. This finding reveals an ultrafast and efficient pathway for writing magnetic
bits at record-breaking speeds.

= What is the reversal mechanism?

= IS it possible to represent it with a spin
model?
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Fields and temperatures

ﬁ -1.0
6001 8% I

bl —o—T

. e

> —O0—T, -0.8

o —®—H/H
~—~ 500 -
X
~ - 0.6
<b) T
| — —
= @
+—

o
S 400 - -0.4
(D)
o
£ e 08 0 ey, |
— -0.2
300 —Peltmme™
— T T L L L L L L e L 0.0
00 0.2 04 06 08 10 1.2 14 16 1.8 20

t(ps)

Simple '2-temperature’ model

Problem — energy associated with the laser pulse (here
expressed as an effective temperature) persists much longer
than the magnetic field.

Equlibrium temperature much lower than T,
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Magnetisation dynamics

M —m— 1060K

—®— 600K

z 800K M —HE—1060K

. Z —@— 600K
oz N -

\ | K 800K

0.1+

o

0.0 .\ T T
(0] O.é Oﬁﬂg 08 10 1.2 14 16 1.8 20

L7 t(ps)

-0.1

-0.2-

t(ps)
Reversal is non-precessional — m, and m, remain zero. Linear
reversal mechanism
Associated with increased magnetic susceptibility at high temperatures

Too much laser power and the magnetisation is destroyed after
reversal

Narrow window for reversal
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Tl

Linear reversal

05 0.25 ——T—
645 K|
0.25 o
0 oY
0.5
- 05 opl— @
105 0 05 1 05025 0 02505  -0.25 0 0.25

It ITl¢ It
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Transition from circular to linear reversal (Joe
Barker and Richard Evans)

= At 620K KV/kT=80 — no
reversal

= NB, timescale of calculation
is 1 ns — KV/KT needs to be
around 2 for reversal!

s Reversal occurs at 670K.

= Effective energy barrier for
linear reversal much lower
than for coherent rotation.
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‘Reversal window’

1.0 A

0.5+

——0U—"0[1]

[]

0.0

-0.5 -

-1.0 -

1 ' 1 ' 1 1 1 ' 1 !
500 600 700 800 900 107/0 1100

1 |—|/

L L

[T

5 _— D\D/

L]

= Well defined temperature range for reversal
= This leads to a ‘phase diagram’ for optomagnetic reversal
= Studied using the Landau-Lifshitz-Bloch equation (lecture 2)
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Multiscale magnetism

Need is for links between ab-initio and atomistic
models

BUT comparison with experiments involves
simulations of large systems.

Typically magnetic materials are ‘nanostructured’, ie
designed with grain sizes around 5-10nm.

Permalloy for example consists of very strongly
exchange coupled grains.

Such a ‘continuous’ thin film cannot be simulated
atomistically

Is it possible to ‘import’ atomistic level information
into micromagnetics? This is the subject of Lecture 2!
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Summary

An atomistic approach to the simulation of static and
dynamic magnetic properties using ab-initio
information was described

An atomistic model of the magnetic properties of
FePt has been developed

The model predicts the Curie temperature and
anisotropy well using ab-initio parameters

In particular the experimental dependence K=M" with
n = 2.1 is explained by a dominant 2-ion anisotropy
term introduced by the delocalised Pt moments.

Atomistic model was used to explore the physics of
ultrafast magnetisation processes

New (linear) magnetisation reversal mechanism
operates at temperatures close to T, — seems to be
important for opto-magnetic reversal
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= Atomistic model applied to pump-probe
experiments shows

« Fast disappearance of M on application of the
laser pulse

= Slow recovery of the magnetisation after
application of the laser pulse (consistent with
recent experiments). Origin?

= Experiments and theory are converging on
the nm / sub ps scales. Exciting possibilities

for understanding the
laser/spin/electron/phonon interaction at a

very fundamental level.
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