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Summary
 Introduction – high anisotropy materials and 

magnetic recording

 The need for atomistic simulations

 Static properties – Ising model and MC 
simulations

 Atomistic simulations 
 Model development

 Langevin Dynamics and Monte Carlo methods

 Magnetisation reversal

 Applications
 Pump-Probe processes

 Opto-magnetic reversal

 Atomistic model of Heat Assisted Magnetic Recording 
(HAMR)
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1. Transition position jitter sj limits media noise performance!

2. Key factors are cluster size D* and transition width a.

3. Reducing the grain size runs into the so-called superparamagnetic limit –

information becomes thermally unstable
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Superparamagnetism
 The relaxation time of a grain is given by the 

Arrhenius-Neel law

 where f0 = 109s-1. and E is the energy barrier

 This leads to a critical energy barrier for 
superparamagnetic (SPM) behaviour

 where tm is the ‘measurement time’

 Grains with E < Ec exhibit thermal equilibrium (SPM) 

behaviour - no hysteresis
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Minimal Stable Grain Size (cubic grains)

D. Weller and A. Moser, IEEE Trans. Magn.35, 4423(1999)

Alloy System Material Anisotropy Saturation Magnetization Anisotropy Field Minimum stable grain size

Ku (107erg/cc) Ms (emu/cc) Hk (kOe) Dp (nm)

CoCrPtX 0.20 200-300 15-20 8-10

Co-alloy Co 0.45 1400 6.4 8.0

Co3Pt 2.00 1100 36 4.8

FePd 1.8 1100 33 5.0

L10-phase FePt 6.6-10 1140 116-175 2.8-3.3

CoPt 4.9 800 123 3.6

MnAl 1.7 560 69 5.1

RE-TM Nd2Fe14B 4.6 1270 73 3.7

SmCo5 11-20 910 240-400 2.2-2.7
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Write Field is limited by BS (2.4T today!)of Recording Head

H0=aHK-NMS

today

future

1. Time

2. Temperature

3. Anisotropy
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Bit Patterned Media
Lithography vs Self Organization

Major obstacle is finding low cost 

means of making media.

At 1 Tbpsi, assuming a square bit cell and 

equal lines and spaces, 12.5 nm lithography 

would be required.

Semiconductor Industry Association 

roadmap does not provide such linewidths 

within the next decade.

•6.3+/-0.3 nm FePt particles

sDiameter@0.05

FePt SOMA media

S. Sun, Ch. Murray, D. Weller, L. Folks, A. 

Moser, Science 287, 1989 (2000).

Lithographically Defined



What we have to deal with

 Lengthscales

 Electronic structure (exchange, anisotropy, etc …)

 Atomistic – introduces thermodynamics

 Micromagnetic

 Timescales

 100 femtoseconds – ultrafast processes

 nanoseconds – magnetic recording

 Seconds (VSM)

 Years (thermal stability in recording)

 Geological ages (geomagnetism)

 No single model can be expected to do everything
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Overview of models
 ‘ab-initio’ calculations

 Information on electronic structure and intrinsic magnetic properties

 Restricted to zero K and small numbers of atoms

 Atomistic models

 Larger number of atoms (106 to 108)

 Non-zero temperature and ultrafast dynamics

 Still relatively small systems

 Micromagnetic models

 System size up to microns

 Non-zero temperature and ultrafast dynamics

 Not good at high temperatures close to Tc

 Macroscopic models (eg Preisach)

 Very large systems

 Phenomenological models 

8



Micromagnetics
 Around since the pioneering work of William Fuller 

Brown in the 1960s

 Used for studying non-uniform magnetisation 
reversal processes

 Since the mid 1980s, significant advances in 
modelling techniques 

 Micromagnetics is now a very mature theory

 Large scale calculation – cannot introduce atomic 
lengthscale calculation explicitly

 Essential approach is to make an approximation to 
the exchange valid for long wavelength 
magnetisation changes 
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Micromagnetic exchange
The exchange energy is essentially short ranged and 
involves a summation of the nearest neighbours.  
Assuming a slowly spatially varying magnetisation the 

exchange energy can be written

Eexch = Wedv, with We = A(m)2

(m)2 = (mx)
2 + (my)

2 + (mz)
2

 The material constant A = JS2/a for a simple cubic lattice
with lattice constant a. A includes all the atomic level
interactions within the micromagnetic formalism.
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Dynamic behaviour

 Dynamic behaviour of the 
magnetisation is based on the Landau-
Lifshitz equation

Where g0 is the gyromagnetic ratio and a 
is a damping constant
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Langevin Dynamics (introduces 
non-zero temperature)
 Based on the Landau-Lifshitz-Gilbert 

equations with an additional stochastic field 
term h(t).

 From the Fluctuation-Dissipation theorem, the 
thermal field must must have the statistical 
properties

 From which the random term at each 
timestep can be determined. 

 h(t) is added to the local field at each 
timestep.

0)(  th j
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Typical application of micromagnetics; structure 
of the vortex state

Permalloy (Ni80Fe20) nanodots

 Saturation magnetization:
Ms = 8·105 A/m = 8·102 G
Js1 T

 Exchange constant:
A = 13·10-12 J/m = 1.3·10-

6 erg/cm

 Anisotropy has been neglected

 Radius of 100 nm, thickness of 
20 nm

Shinjo et al., Magnetic Vortex Core Observation in
Circular Dots of Permalloy, Science 289 (2000) 930

vortex state
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Micromagnetics (thanks to Werner Scholz, Seagate)

• Effective field Heff :

- exchange

- anisotropy

- magnetostatic

- external field

• Find energy 

minima by 

integration of the 

Gilbert equation of 

motion

or direct energy 

minimization
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• divide particles into finite elements 
 triangles, tetrahedrons

• expand J with basis function Ji

• energy as a function of J1, J2 … JN

• effective field

 effective field on irregular grids

 rigid magnetic moment

at the nodes
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Hysteresis loop

annihilation field:

70 kA/m = 880 Oe = 88 mT

nucleation field:

5 kA/m = 62 Oe = 6.2 mT

Equilibrium in

zero field

“C” state

saturated state

W Scholz et al J Magn. Magn. Mater., 266, 155-163 (2003)
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 Micromagnetics is highly successful with 
large scale magnetisation structures 
with long-wavelength magnetisation 
variations only

 BUT it cannot deal with short 
wavelength fluctuations and fails to 
predict the Curie Temperature.
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Modelling magnetic properties:The need 
for atomistic/multiscale approaches

 Standard approach (Micromagnetics) is based on a 
continuum formalism which calculates the 
magnetostatic field exactly but which is forced to 
introduce an approximation to the exchange valid 
only for long-wavelength magnetisation fluctuations.

 Thermal effects can be introduced, but the limitation 
of long-wavelength fluctuations means that 
micromagnetics cannot reproduce phase transitions.

 The atomistic approach developed here is based on 
the construction of a physically reasonable classical 
spin Hamiltonian based on ab-initio information.
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Micromagnetic exchange
The exchange energy is essentially short ranged and 
involves a summation of the nearest neighbours.  
Assuming a slowly spatially varying magnetisation the 

exchange energy can be written

Eexch = Wedv, with We = A(m)2

(m)2 = (mx)
2 + (my)

2 + (mz)
2

 The material constant A = JS2/a for a simple cubic lattice
with lattice constant a. A includes all the atomic level
interactions within the micromagnetic formalism.
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Relation to ab-initio calculations and micromagnetics

 Ab-initio calculations are carried out at the electronic 
level.

 Number of atoms is strictly limited, also zero temperature 
formalism.

 Atomistic calculations take averaged quantities for 
important parameters (spin, anisotropy, exchange, etc) 
and allow to work with 106 to 108 spins. Phase transitions 
are also allowed.

 Micromagnetics does a further average over hundreds of 
spins (continuum approximation)

 Atomistic calculations form a bridge
 Lecture 1: concentrates on the link to ab-intio calculations –

development of a classical spin Hamiltonian for FePt from ab-initio 
calculations and comparison with experiment.

 Lecture 2: Development of multi-scale calculations- link to 
micromagnetics via the Landau-Lifshitz-Bloch (LLB equation).



Atomistic models and thermodynamics

 Ising model – simplest model of magnetic phase 
transtions

 Can calculate thermodynamic properties analytically

 Introduction of the Monte-Carlo technique

 Check of analytical theory vs numerical calculations

 Important demonstration of the computational 
physics approach – always test the code!

 Numerical techniques are normally necessary to 
investigate complex physical systems.
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Atomic resolution micromagnetics; do we 
need a new model?

 Why not use micromagnetics with atomic resolution?

 Micromagnetics is a continuum formalism

 Requirement – exchange MUST reduce to the Heisenberg 
form. 

 Then, micromagnetic model becomes an atomistic 
simulation. BUT

 Very limited; sc lattice, nearest neighbour exchange (cf for FePt 

5 lattice spacings + exchange is directional + 2-ion anisotropy 

leads to complex effects at surfaces.
 Unnecessarily good calculation of magnetostatic field – dipolar 

approximation more appropriate + dominance of exchange field 
and short timestepping means that it is not necessary to update 
the magnetostatic field at every timestep (Berkov). 
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Micromagnetic 
simulation

Atomistic simulation

Weak exchange coupling: JAF-FM = 0.016  10-14 erg

y

z

0

Nguyen N. Phuoc et al
Phys. Stat. Sol (b) 244, 4518-21 (2007)



The Ising model
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Heat capacity
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Mean field theories
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Ising model MF theory
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Graphical solution

31



Thermodynamic quantities

32
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Calculation of equilibrium properties

 Description of the properties of a system in thermal 
equilibrium is based on the calculation of the partition 
function Z given by

where S is representative of the spin system

 If we can calculate Z it is easy to calculate thermal 
average properties of some quantity A(S) as follows

Where p(S) is the probability of a given spin-state
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Monte-Carlo method

 It would be possible in principle to do a 
numerical integration to calculate <A>.

 However, this is very inefficient since 
p(S) is strongly peaked close to 
equilibrium.

 A better way is to use ‘importance 
sampling’, invented by Metropolis et al 
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Importance sampling

 We define a transition probability between 
states such that the ‘detailed balance 
condition is’ obeyed

 The physics can be understood given that 
p(S)=Z-1exp(-H(S)/kBT), ie p(S) does not 
change with time at equilibrium.
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Metropolis algorithm
1. For a given state choose a spin i (randomly or 

sequentially), change the direction of the spin, and 
calculate the energy change E.

2. If E < 0, allow the spin to remain in the new state. 
If E > 0, choose a uniformly distributed random 
number r [0; 1]. if r < exp(-E/kBT) allow the spin 
to remain in the new state, otherwise the spin 
reverts to its original state.

3. Iterate to equilibrium

4. Thermal averages reduce to an unweighted 
summation over a number (N) of MC moves, eg for 
the magnetisation





N

i
iMNM

1

1



M vs T for 2-D Ising model (MC calculations of Joe Barker)
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Summary

 Thermodynamic properties of magnetic materials 
studied using Ising model

 Analytical and mean-field model

 MC approach for atomistic calculations agrees well with 
analytical mode (Onsager)

 In the following we introduce a dynamic approach 
and apply this to ultrafast laser processes

 We also investigate the link between ab-initio and 
atomistic models.
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Atomistic model of dynamic properties

 Uses the Heisenberg form of exchange

 Spin magnitudes and J values can be 
obtained from ab-initio calculations.

 We also have to deal with the magnetostatic 
term.

 3 lengthscales – electronic, atomic and 
micromagnetic – Multiscale modelling.
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Model outline

Ab-initio information (spin, 

exchange, etc)

Classical spin Hamiltonian

Magnetostatics 

Dynamic response 

solved using 

Langevin Dynamics 

(LLG + random 

thermal field term)

Static (equilibrium) 

processes can be 

calculated using 

Monte-Carlo 

Methods
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M vs T; static (MC) and dynamic calculations

 Dynamic values are calculated using Langevin 
Dynamics for a heating rate of 300K/ns. 

 Essentially the same as MC values.

  Fast relaxation of the magnetisation (see later)
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How to link atomistic and ab-
initio calculations?

 Needs to be done on a case-by-case basis

 In the following we consider the case of FePt, 
which is especially interesting.

 First we consider the ab-initio calculations 
and their representation in terms of a 
classical spin Hamiltonian.

 The model is then applied to calculations of 
the static and dynamic properties of FePt.
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Ab-initio/atomistic model of FePt

 Anisotropy on Pt sites

 Pt  moment induced by the Fe

 Treating Pt moment as independent degrees of freedom gives 
incorrect result (Low Tc and ‘soft’ Pt layers)

 New Hamiltonian replaces Pt moment with moment proportional to 
exchange field. Exchange values from ab-initio calcuations.

 Long-ranged exchange fields included in a FFT calculation of 
magnetostatic effects

 Langevin Dynamics used to look at dynamic magnetisation reversal

 Calculations of 

 Relaxation times

 Magnetisation vs T
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FePt exchange

 Exchange coupling is long ranged in 
FePt
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FePt Hamiltonian
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Localisation (ab-initio calculations)

To  good approximation the Pt moment is found numerically 
to be  Exchange field from the Fe



48

Thus we take the FePt moment to be given by

With 

Substitution for the Pt moments leads to a Hamiltonian 
dependent only on the Fe moments;
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 All quantities can be determined from 
ab-initio calculations

 2-ion term (resulting from the 
delocalised Pt degrees of freedom) is 
dominant 
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Anisotropy of FePt nanoparticles

 New Hamiltonian replaces Pt 
moment with moment 
proportional to exchange 
field from Fe. Gives a 2 ion 
contribution to anisotropy

 Exchange and K(T=0) values 
from ab-initio calculations.

 Long-ranged exchange fields 
included in a FFT calculation 
of magnetostatic effects

 Langevin Dynamics or Monte-
Carlo approaches

 Can calculate
 M vs T

 K vs T

 Dynamic properties

 Good fit to experimental data 
(Theile and Okamoto)

 First explanation of origin of 
experimental power law – results 
from 2 ion anisotropy



Model of magnetic interactions for ordered 3d-5d alloys: Temp. 

dependence of equilibrium properties.

Reasonable estimate of Tc (no fitting parameters)
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Ultrafast Laser induced 
magnetisation dynamics

 The response of the magnetisation to 
femtosecond laser pulses is an important 
current area of solid state physics

 Also important for applications such as Heat 
Assisted Magnetic Recording (HAMR)

 Here we show that ultrafast processes cannot 
be simulated with micromagnetics.

 An atomistic model is used to investigate the 
physics of ultrafast reversal.
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Pump-probe experiment
 Apply a heat pulse to the material using a high 

energy fs laser.
 Response of the magnetisation is measured 

using MOKE
 Low pump fluence – all optical FMR
 High pump fluence – material can be 

demagnetised.
 In our model we assume that the laser heats the 

conduction electrons, which then transfer energy 
into the spin system and lattice.

 Leads to a ‘2-temperature’ model for the 
temperature of the conduction electron and 
lattice
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2 temperature model
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Atomistic model
 Uses the Heisenberg form of exchange

 Dynamics governed by the Landau-
Lifshitz-Gilbert (LLG) equation.

 Random field term introduces the 
temperature (Langevin Dynamics).

 Variance of the random field determined 
by the electron temperature Tel.
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Pump-probe simulations –
continuous thin film

 Rapid disappearance of the magnetisation

 Reduction depends on l

l
l

l
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Ultrafast demagnetisation

 Experiments on Ni (Beaurepaire et al 
PRL 76 4250 (1996)

 Calculations for peak temperature of 
375K

 Normalised M and T. During 
demagnetisation M essentially follows T
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Opto-magnetic reversal

 What is the reversal mechanism?

 Is it possible to represent it with a spin 
model?
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Fields and temperatures

 Simple ‘2-temperature’ model 

 Problem – energy associated with the laser pulse (here 
expressed as an effective temperature) persists much longer 
than the magnetic field.

 Equlibrium temperature much lower than Tc
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Magnetisation dynamics

 Reversal is non-precessional – mx and my remain zero. Linear 
reversal mechanism

 Associated with increased magnetic susceptibility at high temperatures

 Too much laser power and the magnetisation is destroyed after 
reversal

 Narrow window for reversal
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Linear reversal



Transition from circular to linear reversal (Joe 
Barker and Richard Evans)

 At 620K KV/kT=80 – no   
reversal 

 NB, timescale of calculation 
is 1 ns – KV/kT needs to be 
around 2 for reversal!

 Reversal occurs at 670K. 

 Effective energy barrier for 
linear reversal much lower 
than for coherent rotation.
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‘Reversal window’

 Well defined temperature range for reversal

 This leads to a ‘phase diagram’ for optomagnetic reversal

 Studied using the Landau-Lifshitz-Bloch equation (lecture 2)
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Multiscale magnetism
 Need is for links between ab-initio and atomistic 

models

 BUT comparison with experiments involves 
simulations of large systems.

 Typically magnetic materials are ‘nanostructured’, ie 
designed with grain sizes around 5-10nm.

 Permalloy for example consists of very strongly 
exchange coupled grains.

 Such a ‘continuous’ thin film cannot be simulated 
atomistically 

 Is it possible to ‘import’ atomistic level information 
into micromagnetics? This is the subject of Lecture 2!
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Summary
 An atomistic approach to the simulation of static and 

dynamic magnetic properties using ab-initio 
information was described

 An atomistic model of the magnetic properties of 
FePt has been developed

 The model predicts the Curie temperature and 
anisotropy well using ab-initio parameters

 In particular the experimental dependence K=Mn with 
n = 2.1 is explained by a dominant 2-ion anisotropy 
term introduced by the delocalised Pt moments.

 Atomistic model was used to explore the physics of 
ultrafast magnetisation processes

 New (linear) magnetisation reversal mechanism 
operates at temperatures close to Tc – seems to be 
important for opto-magnetic reversal
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 Atomistic model applied to pump-probe 
experiments shows
 Fast disappearance of M on application of the 

laser pulse

 Slow recovery of the magnetisation after 
application of the laser pulse (consistent with 
recent experiments). Origin?

 Experiments and theory are converging on 
the nm / sub ps scales. Exciting possibilities 
for understanding the 
laser/spin/electron/phonon interaction at a 
very fundamental level.


