Fundamentals of Magnetism II

Critical Switching curve:
Coupled vs. Uncoupled Magnetic Systems

Leonard Spinu

University of New Orleans

MAGNETIZATION SWITCHING

Magnetization changes by rotation = Switching $| M \uparrow \rangle$ or $| M \downarrow \rangle$

☐ Static switching – SW switching

Two stable states (logical "0" and "1")

- Stonner-Wohlfarth model
- Single domain particles
- DC applied field

- **☐** Dynamic switching (control of switching field and time)
- Switching time
- M(t) LLG equation
- H(t) (Pulsed field)

Stoner-Wohlfarth Model

- Single Domain Particles at T=0K
- No Interactions
- Uniaxial anisotropy
- Coherent Rotation
- Very useful in modeling magnetic particles in
 - Magnetic storage
 - Biomagnetism
 - Rock Magnetism
 - Paleomagnetism

Stoner-Wohlfarth Model

SWITCHING & CRITICAL CURVE

A MECHANISM OF MAGNETIC HYSTERESIS IN HETEROGENEOUS ALLOYS

BY E. C. STONER, F.R.S. AND E. P. WOHLFARTH

Physics Department, University of Leeds

Table 3. Dependence of $\cos\phi$ on h and θ for prolate spheroid

θ	10	20	30	40	45	50	60	70	80	90
2.0	0.9983	0.9935	0.9864	0-9783	0.9744	0.9712	0.9683	0.9734	0.9883	1.0
1.5	0.9975	0.9906	0.9798	0.9666	0.9598	0.9534	0.9441	0.9453	0.9676	1.0
1-4	0.9974	0.9897	0.9779	0.9632	0.9555	0.9481	0.9366	0.9356	0.9582	1.0
1.3	0.9971	0.9888	0.9757	0.9593	0.9506	0.9420	0.9277	0.9237	0.9452	1.0
1.2	0.9969	0.9877	0.9733	0.9549	0.9449	0.9349	0.9172	0.9091	0.9273	1.0
1.1	0.9966	0.9865	0.9704	0.9498	0.9383	0.9266	0.9047	0.8913	0.9031	1.0
1.0	0.9962	0.9850	0.9672	0.9438	0.9306	0.9169	0.8900	0.8697	0.8715	1.0
0-9	0.9958	0.9834	0.9633	0.9368	0.9222	0.9055	0.8726	0.8437	0.8318	0.9
0.8	0.9953	0.9814	0.9589	0.9286	0.9110	0.8921	0.8521	0.8128	0.7841	0.8
0-7	0.9947	0.9791	0.9536	0.9189	0.8985	0.8763	0.8278	0.7766	0.7286	0.7
0-6	0.9941	0.9764	0.9473	0.9074	0.8837	0.8516	0.7994	0.7345	0.6660	0.6
0.5	0.9932	0.9730	0.9397	0.8936	0.8660	0.8355	0.7660	0.6862	0.5972	0.5
0.4	0.9922	0.9690	0.9305	0.8771	0.8449	0.8092	0.7272	0.6316	0.5225	0.4
0.3	0.9910	0.9640	0.9193	0.8572	0.8197	0.7780	0.6821	0.5702	0.4427	0.3
0.2	0.9894	0.9578	0.9055	0.8329	0.7892	0.7407	0.6300	0.5018	0.3578	0.2
0.1	0.9874	0.9499	0.8881	0.8031	0.7523	0.6962	0.5697	0.4260	0.2682	0.1
0.0	0.9848	0.9397	0.8660	0.7660	0.7071	0.6428	0.5000	0.3420	0.1736	0.0
-0-1	0.9813	0.9261	0.8374	0.7194	0.6512	0.5779	0.4190	0.2490	0.0741	-0.1
0-2	0.9764	0.9075	0.7991	0.6593	0.5807	0.4977	0.3236	0.1451	-0.0311	~0.2
0.3	0.9692	0.8809	0.7457	0.5786	0.4880	0.3952	0.2085	0.0275	-0.1429	-0.3
0.4	0.9583	0.8410	0.6645	0.4596	0.3551	0.2528	0.0612	-0.1103	-0.2632	-0.4
0.5	0.9397	0.7660	0.5000	0.1736	0.0000	-0.0481	-0.1736	-0.2868	~ 0·3961	-0.5
0-6	0.9015	*******		_	_	_			-0.5542	-0-6
0-7						_		_	_	-0.7
0.8			_		_					-0.8
0.9				_						-0.9
1-0	_	_	_		_	_		. —		-1.0
έφο έφο	0.7740	0.5660	0.3456	0.1162	0.0000	-0.1162	-0.3456	-0.5660	-0.7740	-1.0
146	-0.9946	<i></i> 0·9750	-0.9416	-0.8940	-0.8660	-0.8361	-0.7745	-0.7224	-0.7128	-1.0

Table 4. Critical field, h_0 , critical angle of magnetization, ϕ_0 , and related quantities as dependent on orientation, θ , of prolate spheroid

 ϕ_0 and ϕ_0' are the initial and final angles made by the magnetization vector, I_0 , with the positive direction of the field, as h, decreasing from a positive value greater than $|h_0|$, passes through the value h_0 . The resolved value of the magnetization in the positive direction of the field is given by $I_0 \cos \phi$. The jump in the resolved magnetization at h_0 is given by $I_0(\cos \phi_0' - \cos \phi_0)$.

 $h = H/(N_b - N_a) I_0$, where N_a and N_b are the demagnetization coefficients along the polar and equatorial axes respectively.

θ	$-h_0$	ϕ_{o}	$\cos \phi_0$	$\phi_0' - 180$	$-\cos \phi_0'$	$\cos \phi_0' - \cos \phi_0$
0	1.00000	0.000	1.00000	0.000	1.00000	-2.00000
1	0.90707	15.542	0.96343	0.524	0.99996	-1.96339
2	0.85929	20.100	0.93919	1.076	0.99982	-1.93901
4	0.79237	26.391	0.89578	2.231	0.99924	-1.89502
6	0.74370	31.264	0.85479	3.440	0.99820	-1.85299
8	0.70531	$35 \cdot 471$	0.81441	4.689	0.99665	-1.81106
10	0.67381	39-287	0.77404	5.971	0.99458	-1.76862
12	0.64733	42.829	0.73339	7.279	0.99194	-1.72533
14	0.62475	46.186	0.69232	8.610	0.98873	-1.68105
16	0.60527	$49 \cdot 402$	0.65075	9.958	0.98493	-1.63568
18	0.58838	52.508	0.60865	11.322	0.98054	-1.58920
20	0.57365	55-526	0.56603	12.697	0.97555	-1.54158
30	0.52402	69.784	0.34557	19.671	0.94164	-1.28721
40	0.50255	83.326	0.11623	26.618	0.89402	-1.01025
45	0.50000	90.000	0.00000	30.000	0.86603	-0.86603
				00.200		% H1005
50	0.50255	96.674	-0.11623	33.269	0.83610	-0.71987
60	0.52402	110-216	-0.34557	39.238	0.77452	-0.42896
70	0.57365	$124 \cdot 474$	-0.56603	43.749	0.72237	-0.15634
50	0.50000	107 (00	o conce	44.007	0.71504	-0.10659
72	0.58838	127-492	-0.60865	44.337	0·71524 0·71004	- 0·10039 - 0·05929
74	0.60527	130-598	-0-65075	44.762		-0.01501
76	0.62475	133.814	-0.69232	44.982	0.70733	+ 0.02550
78	0.64733	137-171	-0.73339	44.936	$0.70789 \\ 0.71283$	+0-06121
80	0.67381	140.713	-0.77404	44.534	0.71283	+0.00121
00	0.70531	144-529	-0.81441	43.630	0.72380	+0.09061
82 84	0.74370	148.736	-0.85479	41.968	0.74352	+0.11126
86	0.79237	153-609	-0.89578	39.013	0.77700	+0.11878
80	0.19291	199.009	0.09019	99.019	0.77700	+0-11010
88	0.85929	159-900	-0.93919	33.277	0.83603	+0.10316
89	0.90707	164.458	-0.96343	27.609	0.88614	+0.07730
90	1.00000	180.000	-1.00000	0.000	1.00000	0.00000
90	1.00000	190.000	-1.00000	0.000	1.00000	0.0000

SWITCHING & CRITICAL CURVE

-research memorandum-

IBM RESEARCH CENTER

POUGHKEEPSIE, NY

no. RM 003.111.224 date October 1, 1956

THEORY OF MAGNETIC HYSTERESIS IN FILMS AND ITS APPLICATION TO COMPUTERS

by

STATIC CRITICAL CURVE

The free energy of a uniaxial anisotropy single domain particle

$$W(\theta, \mathbf{H}) = K_1 \sin^2 \theta - \mathbf{M}.\mathbf{H} \longrightarrow \frac{\partial W}{\partial \theta} = 0; \quad \frac{\partial^2 W}{\partial \theta^2} = 0 \longrightarrow h_x = \sin^3 \theta; \quad h_y = -\cos^3 \theta$$

CC = the locus of in-plane fields at which the irreversible magnetization reversal occurs

J. C. Slonczewski, IBM Research Center Memorandum R. M. Report No. 003.111.224.

Classical and quantum magnetization reversal studied in nanometer-sized particles and clusters

Edited by

to be published in: Advances in Chemical Physics invitation from Stuart A. Rice Second version of 31 Dec. 2000

Author

Wolfgang Wernsdorfer Lab. L. Néel - CNRS, BP166, 38042 Grenoble Cedex 9, France, e-mail: wernsdor@labs.polycnrs------

Fig. 1.5 Schematic drawing of a planar micro-bridge-DC-SQUID on which a ferromagnetic particle is placed. The SQUID detects the flux through its loop produced by the sample magnetization. Due to the close proximity between sample and SQUID a very efficient and direct flux coupling is achieved.

Fig. 3.3 Temperature dependence of the switching field of a 3 nm Co cluster, measured in the plane defined by the easy and medium hard axes $(H_y - H_z)$ plane in Fig. 2.6). The data were recorded using the blind mode method (Sect. 1.2.6) with a waiting time of the applied field of $\Delta t = 0.1$ s. The scattering of the data is due to stochastic and in good agreement with Eq. 3.10.

APPLIED PHYSICS LETTERS VOLUME 76, NUMBER 5 31 JANUARY 2000

Two-dimensional magnetic switching of micron-size films in magnetic tunnel junctions

A. Anguelouch, B. D. Schrag, and Gang Xiao
Department of Physics, Brown University, Providence, Rhode Island 02912

Yu Lu, P. L. Trouilloud, R. A. Wanner, and W. J. Gallagher IBM T. J. Watson Research Center, Yorktown Heights, New York 1

S. S. P. Parkin

IBM Almaden Research Center, San Jose, California 95120

FIG. 2. (a) Asteroid curve of one representative MTJ with dimensions 0.8 \times 6.4 μ m². H_x and H_y are fields in the easy- and hard-axis directions. (b) Stoner-Wohlfarth critical curve for an ideal single-domain particle with uniaxial anisotropy.

Static Critical Curve: Hypocycloid

STONER-WOHLFARTH & CRITICAL CURVE

K_1 , and K_2

Micromagnetic studies of coherent rotation with quartic crystalline anisotropy

Ching-Ray Chang
Department of Physics, National Taiwan University, Taipei, Taiwan, Republic of China
(Received 28 August 1990; accepted for publication 23 October 1990)

CRITICAL CURVE: Experiments

Critical curves for determining magnetization directions in implanted garnet films

C. C. Shira) and Y. S. Lin

IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598 (Received 28 September 1978; accepted for publication 15 December 1978)

FIG. 13. (a)—(d) Sequence of Ferrofluid patterns of domain walls and underlying magnetic bubble in response to a 25-Oe rotating field with interpretations by using critical curves. Stripe-out in (b), "flip" motion in (d), (f), (h), and "whip" motion in (j), (k), and (m), (e)—(h) Convergent charged wall with bubble after "flip" motion in (f), and divergent charged wall without bubble after "flip" motion in (h), (i)—(m) Charged walls in zigzag shape in (j), convergent charged wall with bubble after "whip" motion in (k), and divergent charged wall after "whip" motion in (m).

Experimental CC: Susceptibility Method

Introducing our new sensitive method based on reversible susceptibility's singularities detection for determination of the critical curve of 2D magnetic systems

$$\chi_{ij} = \lim_{\Delta H_j \to 0} \frac{\Delta M_i}{\Delta H_j}$$

$$\chi_T = \chi_{xx} = \left(\frac{dM_x}{dH_x}\right)_{H_z = H_y = 0}$$

Experimental CC: Susceptibility Method

Available online at www.sciencedirect.com

Journal of Magnetism and Magnetic Materials 296 (2006) 1-8

Letter to the Editor

Transverse susceptibility as the low-frequency limit of ferromagnetic resonance

L. Spinu^{a,*}, I. Dumitru^b, A. Stancu^c, D. Cimpoesu^c

^aAdvanced Materials Research Institute and Department of Physics, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA

^bAdvanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148, USA ^cFaculty of Physics, "Al.I. Cuza" University, Iasi 700506, Romania

> Received 2 December 2004; received in revised form 6 December 2004 Available online 7 March 2005

Experimental CC: Susceptibility Method

The TS tensor components

$$\chi_{xx} = \frac{M^2}{F_{\theta\theta}F_{\varphi\varphi} - F_{\theta\varphi}^2} \left(\sin^2 \theta_M \sin^2 \varphi_M F_{\theta\theta} \right)$$

$$+ \frac{\sin 2\theta_M \sin 2\varphi_M}{2} F_{\theta\varphi} + \cos^2 \theta_M \cos^2 \varphi_M F_{\varphi\varphi} \right)$$

$$\chi_{yy} = \frac{M^2}{F_{\theta\theta}F_{\varphi\varphi} - F_{\theta\varphi}^2} \left(\sin^2 \theta_M \cos^2 \varphi_M F_{\theta\theta} \right)$$

$$- \frac{\sin 2\theta_M \sin 2\varphi_M}{2} F_{\theta\varphi} + \cos^2 \theta_M \sin^2 \varphi_M F_{\varphi\varphi} \right)$$

$$\chi_{zz} = \frac{M^2}{F_{\theta\theta}F_{\varphi\varphi} - F_{\theta\varphi}^2} \left(\sin^2 \theta_M F_{\varphi\varphi} \right)$$

Probing 2D switching using susceptibility experiments

$$D(\theta_M, \varphi_M) = F_{\theta\theta} F_{\varphi\varphi} - F_{\theta\varphi}^2, \quad \chi_{xx} \propto 1/D(\theta_M, \varphi_M).$$

The theoretical curve

APPLIED PHYSICS LETTERS 86, 012506 (2005)

Probing two-dimensional magnetic switching in Co/SiO₂ multilayers using reversible susceptibility experiments

L. Spinu, ^{a)} H. Pham, and C. Radu Advanced Materials Research Institute and Department of Physics, University of New Orleans, New Orleans, Louisiana 70148

The experimental curve

PHYSICAL REVIEW B 68, 220401(R) (2003)

Vectorial mapping of exchange anisotropy in IrMn/FeCo multilayers using the reversible susceptibility tensor

L. Spinu*

Advanced Materials Research Institute and Department of Physics, University of New Orleans, New Orleans, Louisiana 70148, USA

Al. Stancu

Faculty of Physics, "Al.I. Cuza" University, Iasi 6600, Romania

Y. Kubota, G. Ju, and D. Weller

Seagate Research, Pittsburgh, Pennsylvania 15222, USA

Static vs. Dynamic

LETTERS

Switching of magnetization by nonlinear resonance studied in single nanoparticles

CHRISTOPHE THIRION¹, WOLFGANG WERNSDORFER*¹ DOMINIQUE MAILLY²

Laboratoire Louis Néel, associé à l'UJF, CNRS, BP 166, 38042 Grenoble Cedex 9, France

²Laboratoire de photonique et de nanostructures, CNRS, Route de Nozay, 91460 Marcoussis, France

^{*}e-mail: wernsdor@grenoble.cnrs.fr

DYNAMIC MAGNETIZATION SWITCHING

PHYSICAL REVIEW B VOLUME 61, NUMBER 5 1 FEBRUARY 2000-I

Switching behavior of a Stoner particle beyond the relaxation time limit

M. Bauer, J. Fassbender,* and B. Hillebrands

MAGNETIZATION SWITCHING DIAGRAM

Static Critical Curve .vs. Dynamic Critical Curve

The Nobel Prize in Physics 2007 Discovery of Giant Magnetoresistence

Albert Fert

Peter Grunberg

MTJ FOR MRAM EVOLUTION

- (a) basic magnetic tunnel junction structure consisting of two ferromagnetic metals separated by a thin insulating layer
- (b) exchange-coupling one of the magnetic layers to an antiferromagnetic layer (by "pinning" the layer) the TMR response reflects the hysteresis of the other so-called "free" layer and has a response more suitable for memory
- (c) magnetic offset caused by fields emanating from the pinned layer -> SAF pinned layer; the lower layer in this artificial antiferromagnet is pinned via exchange bias. This flux closure increases the magnetic stability of the pinned layer and reduces coupling to the free layer
- (d) both pinned and free = antiferromagnetically coupled pairs -> used in toggle-MRAM

Synthetic antiferromagnet (SAF) structures

- The synthetic antiferromagnet (SAF) = a nanostructured sandwich of two ferromagnetic thin films antiferromagnetically coupled through a non-magnetic metallic spacer.
- Many technological applications:
 - soft underlayer for perpendicular recording
 - hard disk reading heads
 - magnetic sensors
 - MRAM
 - -Toggle-MRAM

MRAM

Base electrode

Low resistance contact

SAF

	3
	Magne
	Major 6
Comparison	Total fro
between the	
permeen me	Stable
	(corresp
Non Counted	minimur are deter
Non-Coupled	solving 6
	sho
and	Critica
Coupled	
Magnetic	Conv
Structures	
	J

Hsu Chang

Analysis of Static and Quasidynamic Behavior of Magnetostatically Coupled Thin Magnetic Films

Abstract: When two superposed films exert fields on each other, their static and dynamic behaviors change. The following method of analysis is used to study the behavior: The stable states are found by minimizing the total free energy of the films. Then constant-field contours are plotted in the θ_1 - θ_2 plane (θ 's being the stable orientations of the magnetization vectors). In examining the plot, one can predict multiple stable states, switching, threshold, hysteresis, and the detailed paths of magnetization change as a function of applied field.

The solution is carried out by a numerical process which permits evaluation of the following effects: the variation of the degrees of symmetries of the anisotropy energies, the relative orientation between the films, the coupling strength, and the drive-line layout. An example is carried out in sufficient detail for illustrative purposes.

H. Chang, "Analysis of static and quasidynamic behavior of magneostatically coupled thin magnetic films," IBM J. Res. Dev., vol. 6, pp. 419-429, 1962.

Table 2 Comparison between single film and pair of magnetostatically coupled films.

	Single film	Coupled films		
Magnetization vectors	$\mathbf{M} = M \angle \theta$	$\mathbf{M}_1 = M_1 \angle \theta_1; \mathbf{M}_2 = M_2 \angle \theta_2$		
Major easy axes	$\theta = 0$	$\theta_1 = 0, \theta_2 = \alpha$		
Total free energy	Anisotropy energy + magnetization energy	Anisotropy energies + magnetization energies (due to applied field) + magnetization energy (due to interacting field)		
Stable states (corresponding to minimum energy) are determined by solving equations shown	$\partial E/\partial \theta = 0$, subject to the condition $\frac{\partial^2 E}{\partial \theta^2} > 0$	$\partial E/\partial \theta_1 = \partial E/\partial \theta_2 = 0$ subject to the conditions $\frac{\partial^2 E}{\partial \theta_1^2} > 0 \text{ and } \left(\frac{\partial^2 E}{\partial \theta_1 \partial \theta_2}\right)^2 - \frac{\partial^2 E}{\partial \theta_1^2} \frac{\partial^2 E}{\partial \theta_2^2} < 0$		
Critical states	Limiting case of stable states	Limiting case of stable states		
	$\partial E/\partial \theta = 0$	$\partial E/\partial \theta_1 = \partial E/\partial \theta_2 = 0$		
	$\partial^2 E/\partial \theta^2 = 0$	$\partial^2 E/\partial \theta_1^2 = 0$ or $\partial^2 E/\partial \theta_2^2 = 0$ or		
		$\left(\frac{\partial^2 E}{\partial \theta_1 \partial \theta_2}\right)^2 - \frac{\partial^2 E}{\partial \theta_1^2} \frac{\partial^2 E}{\partial \theta_2^2} = 0$		
Convenient description	Critical curve and equili- brium line in h_x - h_y plane (see Appendix I and Fig. 8)	Constant field contours in θ_1 - θ_2 plane (see Section of that title and also Fig. 4)		

H. Chang, "Analysis of static and quasidynamic behavior of magneostatically coupled thin magnetic films," IBM J. Res. Dev., vol. 6, pp. 419-429, 1962.

Constant Angle Contour Maps

SAF CRITICAL CURVE

JOURNAL OF APPLIED PHYSICS 97, 10P507 (2005)

Critical-field curves for switching toggle mode magnetoresistance random access memory devices (invited)

H. Fujiwara^{a)} and S.-Y. Wang

Materials for Information Technology (MINT) Center and Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487

M. Sun

Materials for Information Technology (MINT) Center and Department of Mathematics, University of Alabama, Tuscaloosa, Alabama 35487

(Presented on 9 November 2004; published online 17 May 2005)

FIG. 4. Critical-field curves obtained keeping the parameters m=1 and k=1 for t=1, $h_{N1y}/h_{N1x}=1.5$, and $h_J=1.5$, and changing the thickness ratio t: (a) t=1, (b) t=0.8, and (c) t=0.6. For the same assumption as in Fig. 3 about M_s , H_{k1} , and t_1 , the set of normalized parameters chosen here corresponds to the parameter set of $H_{ku1}=4$ Oe, $M_s(N_{1y}-N_{1x})=4$ Oe, and $J+rM_s^2t_2N_{1x}=0.02$ ergs/cm².

SAF Critical Curve

Critical Curves (CC) – Symmetric SAF

Critical Curves (CC) – Asymmetric SAF

$$m = \frac{M_{2,s}}{M_{1,s}};$$
 $t = \frac{t_2}{t_1};$ $t_i = \text{thickness of layer } i$

$$\chi_{xx} = \frac{F_{\theta_{2}\theta_{2}}\cos^{2}\theta_{1} - 2mt F_{\theta_{1}\theta_{2}}\cos\theta_{1}\cos\theta_{2} + m^{2}t^{2} F_{\theta_{1}\theta_{1}}\cos^{2}\theta_{2}}{F_{\theta_{1}\theta_{1}}F_{\theta_{2}\theta_{2}} - F_{\theta_{1}\theta_{2}}^{2}}$$

Depending on the coupling strength between the two ferromagnetic layers in a coupled (i.e. SAF) structure the critical curve evolves from a simple astroid at zero coupling to more complicated critical curves for larger coupling field values.

Measurements of the critical curve for a coupled structure

Measurements of the critical curve for a coupled structure

SAF Critical Curves: Theory vs. Experiment

SAF – Dynamical Critical Curves

- H. Pham et.al. JAP 97, 10P106, 2005

Switching behavior of SAF: using a bias and a pulse field

Dynamic CC of an asymmetric SAF – sweep rate dependence

The dynamical CC of a SAF element shows that only a digit or word field, which are the field applied at and with respect to the easy axis in toggle MRAM structure, can switch the magnetization

→ using the static CCs instead of dynamic CCs in characterization of a SAF can lead to inadvertent switching of half-selected memory cells

Dynamic CC of an asymmetric SAF – damping dependence

The dynamical CC of a SAF element shows that only a digit or word field, which are the field applied at and with respect to the easy axis in toggle MRAM structure, can switch the magnetization

→ using the static CCs instead of dynamic CCs in characterization of a SAF can lead to inadvertent switching of half-selected memory cells

Dynamic CC of an asymmetric SAF – pulse length dependence

The dynamical CC of a SAF element shows that only a digit or word field, which are the field applied at and with respect to the easy axis in toggle MRAM structure, can switch the magnetization

→ using the static CCs instead of dynamic CCs in characterization of a SAF can lead to inadvertent switching of half-selected memory cells

Dynamic CC of a symmetric SAF – sweep rate dependence

Dynamic CC of a symmetric SAF – damping dependence

Edmund Clifton Stoner (1899-1968)

Erich Peter Wohlfarth (1924-1988)

References

- E. C. Stoner and E. P. Wohlfarth, "A mechanism of magnetic hysteresis in heterogeneous alloys," *Phil. Trans. Roy. Soc.*, vol. A240, pp. 599-644, 1948.
- J. C. Slonczewski, "Theory of Magnetic Hysteresis in Films and Its Application to Computers," *IBM Research Center Poughkeepsie Research Memorandum R.M.* 003.111.224, 1956.
- G. Bertotti, Hysteresis in magnetism: for physicists, materials scientists, and engineers. San Diego: Academic Press, 1998.
- H. Chang, "Analysis of static and quasidynamic behavior of magneostatically coupled thin magnetic films," *IBM J. Res. Dev., vol. 6, pp.* 419-429, 1962.
- H. Fujiwara, S. Y. Wang, and M. Sun, "Magnetization Behavior of Synthetic Antiferromagnet and Toggle-Magnetoresistance Random Access Memory," *Trans. Magn. Soc. Jpn., vol. 4, pp. 121-129, 2004.*