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Magnetic Pole Density and Fields
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What is ‘flux’ and ‘flux density’?

What is a ‘magnetic field’? 



Field From a Sheet Uniformly Magnetised

Perpendicular to Surface
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m = M 

-m  = -M 

m = 0 

B = 0(H+M)

= 0(-M+M) = 0  

Inside:  M = M

H = -4πM (demag)

B = 0

Outside: M = H = B = 0

Why?
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Thin Rod Uniformly Magnetised

Along Axis
H B

 

M

m = M

-m  = -M

m = 0

Outside: M = 0, B = 0H

Inside: M = +M2, Hz < 0, Bz > 0

M2

Bz



Demagnetization Field, Hd

Hint (or HTotal) = H + Hd

For a body with arbitrary shape, Hd is 

not constant; however, for an 

ellipsoid 

Hd = constant.
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Special Cases

c
c

a
a

a
c

Thin oblate 

spheroid (pancake)

Nb = Nc = 0

Na = 1  (4)

Thin prolate 

ellipsoid (cigar)

Nc = 0,  2Na = 1

Na = 1/2  (2)

Sphere

Na = Nb = Nc = N

3N = 1

N = 1/3  (4/3)

Na

Nb

Na

Nb

r = c/a

(a = b)



Demagnetisation Energy and Fields
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Energy associated with 

demagnetisation field -

MHd

Perpendicular Media -

There is a global Hd

Hd is non-uniform

in places Hd = 0

in places Hd is positive!!



Effect of Demag Field on M-H Loop

Hin = Happ – NM

• The loop is sheared with a slope of 1 (4π).

• The only ‘true’ point is at Hc where M=0.

• In practice for N=1 (4π), exchange coupling 

reduces the loop shear



ANISOTROPY

ud = ½ 0NMs
2 sin2 = Ks sin2 

N = Na - Nc

M



Ks > 0 Ks < 0

prolate

spheroid
oblate 

spheroid

(Note:  These are 

sample shapes, 

not energy 

surfaces.)

Shape Anisotropy

c

a

• For c/a > 10, Hc (T=0) > 1T

• Not achieved because of  

incoherent reversal

• Elongated particles for tape 

have c/a ~ 4 and Hc = 0.4T

• CoFe is used to maximise Ms



Crystalline anisotropy

• Due to spin-orbit coupling and chemical bonding of orbitals with 

local environment (crystalline electric field)

• Must have non-spherical atomic orbitals (Lz  0) and non-

spherical crystalline field.

• Dipole-dipole interactions are not strong enough to cause 

significant crystalline anisotropy.  

• Occurs in all crystals but is usually weak in cubic materials.

• Very strong in hexagonal crystals e.g Co and Ba – ferrite.

• Even stronger in some tetragonal cystals e.g. FePt



Other sources of anisotropy

Induced

• Heat in a field, stress, plastic deformation 

(e.g., rolling), etc.

Exchange anisotropy

• coupling between FM and AFM materials



Uniaxial Anisotropy

General case:  u = K1 sin 2  + K2 sin 4  + . . . 

Second and higher-order terms are usually negligible

1st order positive

K1 > 0, K2 = 0:

Ek = K1 sin 2 

Mathematically the same 

as shape anisotropy for 

prolate spheroid.

Energy surface

Easy 

axis



1st-order negative

K1 < 0, K2 = 0:

Ek = -|K1| sin 2  = + |K1| cos 2  (+ constant)

Mathematically the same as shape anisotropy for oblate 

spheroid.

Energy surface Easy plane 

( = 90o)



Torque curves
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• Unless the anisotropy is purely 

uniaxial torque curves are difficult 

(impossible) to interpret

• In practice only possible for single 

crystals



Examples of Uniaxial Anisotropy

• Uniaxial anisotropy occurs in elongated 
particles used in tapes

• The Ms
2 term is why these particles are 

made from Fe60Co40

• It also occurs in materials with strong 
crystal asymmetry

• These include hcp Cobalt and Barium 
Ferrite

• Complex mixed anisotropies can occur in 
materials with elongation perpendicular 
to a c-axis, e.g. Ba-Ferrite platelets



Stoner-Wohlfarth Theory

• This theory explains the behaviour 
of single domain particles at T = 0.

• The particles must be uniaxial and 
align by moment rotation over an 
anisotropy barrier.
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The energy is then:

For H perpendicular to EA, ϕ = 90°

Therefore, the system saturates at:

Anisotropy Field



The Aligned Case

• The Anisotropy Field HK = μ02K/Ms

is needed to pull the moment to 

90°.

• It can then fall into either direction 

along the easy axis.

• This gives a square loop switching 

at HK.

• For a small misalignment of 10° the 

switching field Hs falls by 30%

• At 90° there is no hysteresis.



Critical Fields and Angles

• The minimisation
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The Energy Barrier
Minimisation:

The Energy Barrier, ΔE:

Since

We can write

And so
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Coercivity and Switching Field

 = 20o

Hc = Hsw

 = 70o

Hc < Hsw

See magnetization reversal applet at

http://bama.ua.edu/~tmewes

Reversal/reversal.shtml
http://bama.ua.edu/~tmewes


Incoherent Reversal – Small Particles

• Particles with a single-domain remanent state may reverse 

incoherently, depending on size, shape, and material 

properties.

• Reversal modes can be complex and often best dealt with using 

micromagnetic simulations.

• Common reversal modes are fanning, curling and domain 

wall nucleation and propagation.

coherent 

reversal

curlingfanning dw nucleation  

& propagation



Thermal Activation

• All the models reviewed so far apply ONLY at T = 0.

• In real materials, the moments fluctuate about the easy axis in zero 

field to a degree depending on ΔE (= KV).

• Thus for particles with a small barrier reversal can be activated by 

thermal energy with a relaxation time

• For a measurement time of 100s and f0 = 109s-1, this gives a critical 

barrier for stability.
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100s: ΔE = 25kBT 10 years: ΔE = 40kBT

Particles with ΔE < 25kBT are SUPERPARAMAGNETIC

ΔE > 25kBT are BLOCKED



Effects of Thermal Energy

The critical size

The blocking temperature
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• At low T all grains are blocked and 
Mr/Ms is a maximum

• The median blocking temperature 
<TB> is at the point where Mr/Ms is 
half its maximum value

• The distribution of blocking 
temperatures f(TB) is given by the 
differential of the temperature decay 
of remanance

• The susceptibility/ temperature curve 
is related to f(TB) but <TB> is not at 
the peak

Measurement of Blocking Temperatures

random   5.0        aligned   1 
s

r

s

r

M
M

M
M
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2

)(
maxsr MM

Mr /Ms

T

F(x)

ΔE



Time Dependence

• Thermal energy can reverse moments 
and leads to time dependence.

• Because there is always a distribution 
of ΔE the time dependence is not 
exponential.

• The ‘decay’ is found generally to be 
linear in ln(t).

• The coefficient S(H) varies with H, 
peaking around Hc.

• This causes a sweep-rate dependence 
of Hc.
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Cubic Anisotropy
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• In Fe (100) is easy and (111) is hard, 
K1 > 1

• In Ni (111) is easy and (100) is hard,  
K1 <0



Switching in Cubic Materials

• A cubic material switching at T = 0 

is similar to the uniaxial case.

• The difference is that to get from 

(100) to (100) the moment does 

not have to cross the (111) hard 

direction.

• There is an intermediate route via 

(110) and a very complex energy 

surface.

This reduces the anisotropy field to:

The energy barrier is reduced to:
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Magnetisation Curves

Iron (K1 > 0) Nickel (K1 < 0)

• The reduction in ΔE makes Ni soft

• In Fe shape anisotropy is often dominant due to the Ms
2 term
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Temperature Dependence of Anisotropy
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Cubic:  K1 ~ M 10

Crystalline uniaxial:  K1 ~ M 3

Shape anisotropy:  Ks ~ M 2
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Crystalline anisotropy (low 

temperature regime):

(l = symmetry)



Magnetic Domains

Magnetic domain:  Region in which M is approximately 

uniform in direction.

Domain wall:  Boundary between adjacent domains in 

which M changes direction.



Terminology

• Magnetic poles is a term 

analogous to magnetic charges

• If a north pole is brought near a 

susceptible material, a south pole 

is induced causing attraction

• The magnetic field (of force) is 

represented by lines of flux

• The flux is the flow (of the ether) 

and the strength of the field is the 

density of lines/unit area B

)(0 MHB  

M H



Why Domains?

Large demagnetisation field 

and energy in external field.
Reduced demagnetisation 

field and external field.

Hd



Domain Wall Energy

Domain wall costs exchange energy and anisotropy energy 

(and possibly magnetoelastic energy)

   22 sin,cos2 uanisijex KEJSE

Narrow wall:  large ij, high Eex, low Eanis

Wide wall:  small ij, low Eex, high Eanis

φ

Easy Axis

φFe = 1.5°

φNi = 0.62°



Wall Energy Minimization -
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K = 4 x 105 J/m3

A = 1 x 10-11 J/m

 dw = 16 nm



Bloch and Néel Walls in Thin Films

 - - - 

Bloch Néel

t

ms
Néel

Bloch

Wall type determined by 

magnetostatic energy

•Thin films:  Néel walls

•Thick films:  Bloch walls

 

- - - - 



Closure Domains

 
• For cubic anisotropy, magnetostatic energy can be further 

minimized with closure domains without adding anisotropy 

energy.  (Slight increase in domain wall energy.)

• In systems with strong uniaxial anisotropy e.g Co closure 

domains cannot form due to the hardness of the hard axis.



Domain Wall Pinning

Domain wall motion limited by non-uniformities in wall energy due 

to non-magnetic inclusions or high-anisotropy defects (crystalline 

or magnetoelastic).
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Switching Field Distributions (SFD)

• Only an isolated particle switches at a 

single field

• The SFD results from the distribution 

of ΔE

• The SFD is due to:

- Particle size distribution, usually   

lognormal

- Distribution of K and Ms

- Distribution of orientation

- Dipole-Dipole exchange interactions
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Measurement of SFD

• We can measure f(ΔE) from 

f(TB)

• To get the SFD it is best to 

measure the remenance

curve.

• This measures the irreversible 

switching only

• The differential gives the SFD 

for granular or domain wall 

pinned systems.

M/Ms

H

1RM

SFD

Hr’
Hr

SFD

DCD



Nucleation and Propagation

• When a material reverses a 

reverse domain must nucleate.

• If Hn > Hdw then the domain 

sweeps through the sample 

giving a square loop.

• If Hn < Hdw the loop will be round 

as Hdw is overcome gradually

• In perpendicular films the loop 

can be round as Hd reduces

M

H/Hk

Hn

Perpendicular 

film

Permalloy or 

NdFeB



Summary

• Magnetisation produces effective surface and volume 

charges.  Demagnetisation field and energy depends on 

sample shape.

• Magnetic anisotropy determines preferred orientations of 

the magnetisation.  Source of anisotropy can be shape, 

crystalline, stress, exchange, …

• Magnetisation can form domains to minimize 

magnetostatic energy.  Domain wall width is determined 

by minimising exchange and anisotropy energy.  

• Quasistatic magnetisation reversal in small particles can 

be described by coherent reversal model.  Larger systems 

reverse incoherently.
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