Fundamentals of Magnetism

Part I

Magnetostatics, Anisotropy, Domains, Coherent Rotation, Incoherent Processes and Thermal Effects

Kevin O'Grady

The University of York

and

J.W. Harrell

University of Alabama

Magnetic Pole Density and Fields

$$\mathbf{B} = \mu_0(\mathbf{H} + \mathbf{M})$$

$$\nabla \cdot \mathbf{B} = 0 \quad \Rightarrow \quad \nabla \cdot \mathbf{H} = -\nabla \cdot \mathbf{M} = \rho_m$$

 $\rho_{\it m}$ = magnetic charge density

For pointpole,
$$\mathbf{H} = \frac{\mathbf{q}_{\rm m} \hat{\mathbf{r}}}{4\pi r^2} = -\nabla \varphi_{\rm m}$$
,

(compare $\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}$, $\nabla \cdot \mathbf{D} = \varepsilon_0 \nabla \cdot \mathbf{E} + \nabla \cdot \mathbf{P}$ $= \rho_{total} - \rho_b = \rho_{free}$)

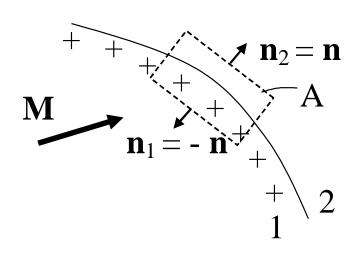
where
$$\varphi_m = \frac{q_m}{4\pi r} = \text{magneticpotential gradient} = \nabla(\Sigma NI)$$

For a volume distribution,

$$arphi_m = \int rac{
ho_m dV}{4\pi\,r}$$

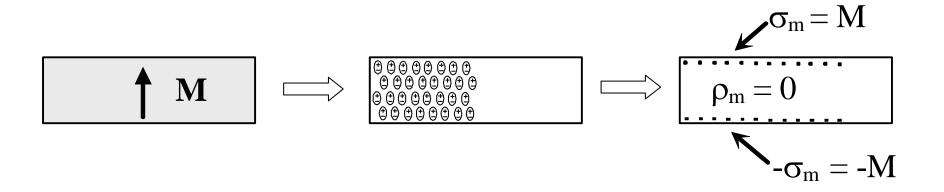
What is 'flux' and 'flux density'?

What is a 'magnetic field'?



 $\mathbf{E} = -\nabla V$

Field From a Sheet Uniformly Magnetised Perpendicular to Surface



$$\mathbf{B} = \mu_0(\mathbf{H} + \mathbf{M})$$

$$\mathbf{H} \downarrow \mathbf{M} \uparrow$$

$$= \mu_0(-\mathbf{M} + \mathbf{M}) = 0$$

Inside: M = M

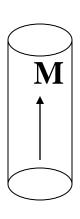
 $\mathbf{H} = -4\pi\mathbf{M}$ (demag)

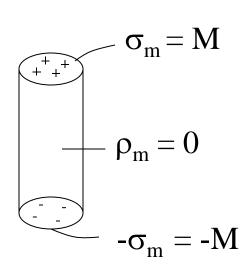
 $\mathbf{B} = 0$

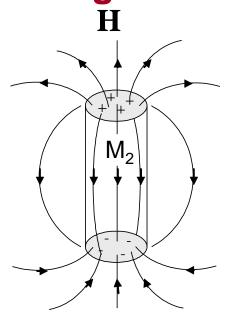
Outside: $\mathbf{M} = \mathbf{H} = \mathbf{B} = 0$

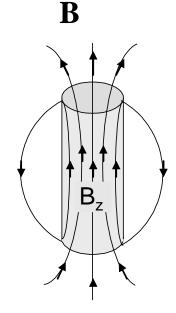
Why?

Thin Rod Uniformly Magnetised Along Axis









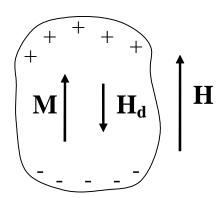
Outside: $\mathbf{M} = 0$, $\mathbf{B} = \mu_0 \mathbf{H}$

Inside: $\mathbf{M} = +M_2$, $H_z < 0$, $B_z > 0$

Demagnetization Field, H_d

$$\mathbf{H}_{int}$$
 (or \mathbf{H}_{Total}) = $\mathbf{H} + \mathbf{H}_{d}$

For a body with arbitrary shape, \mathbf{H}_{d} is not constant; however, for an ellipsoid



 \mathbf{H}_{d} = constant.

Generally, $\mathbf{H}_d = -\widetilde{\mathbf{N}} \cdot \mathbf{M}$, where

$$\widetilde{\mathbf{N}} = \begin{pmatrix} N_a & 0 & 0 \\ 0 & N_b & 0 \\ 0 & 0 & N_c \end{pmatrix}$$

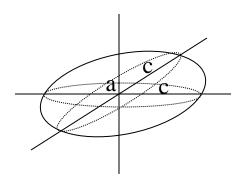
so,
$$\mathbf{H}_d = -N_a M_x \hat{\mathbf{i}} - N_b M_y \hat{\mathbf{j}} - N_c M_z \hat{\mathbf{k}}$$

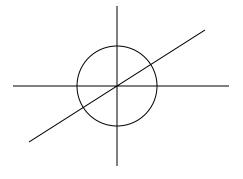
If **M** is along a principle axis, then

$$\mathbf{H}_d = -N\mathbf{M}$$
 $(N = N_a, N_b, or N_c)$
In general,

$$N_a + N_b + N_c = 1 \quad (4\pi \ in \ cgs)$$

Special Cases



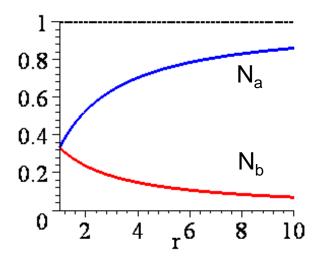


caaa

Thin oblate spheroid (pancake)

$$N_b = N_c = 0$$

$$N_a = 1 (4\pi)$$



Sphere

$$N_a = N_b = N_c = N$$

$$3N = 1$$

$$N = 1/3 \ (4\pi/3)$$

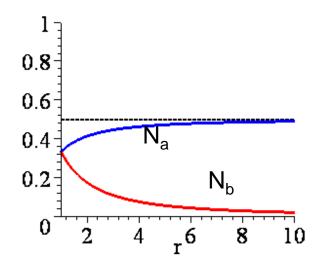
$$r = c/a$$

$$(a = b)$$

Thin prolate ellipsoid (cigar)

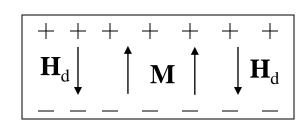
$$N_c = 0$$
, $2N_a = 1$

$$N_a = 1/2 (2\pi)$$



Demagnetisation Energy and Fields

$$\mathbf{H}_{d} = -\tilde{\mathbf{N}} \cdot \mathbf{M} = -\left(N_{a} M_{x} \hat{\mathbf{i}} + N_{b} M_{y} \hat{\mathbf{j}} + N_{c} M_{z} \hat{\mathbf{k}}\right)$$
$$= -\left(N_{a} \cos \alpha \, \hat{\mathbf{i}} + N_{b} \cos \beta \, \hat{\mathbf{j}} + N_{c} \cos \gamma \, \hat{\mathbf{k}}\right) M$$

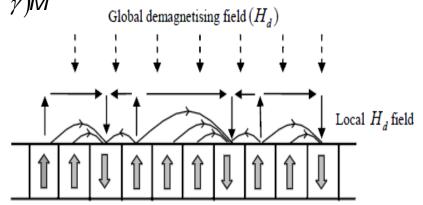


Energy associated with demagnetisation field -

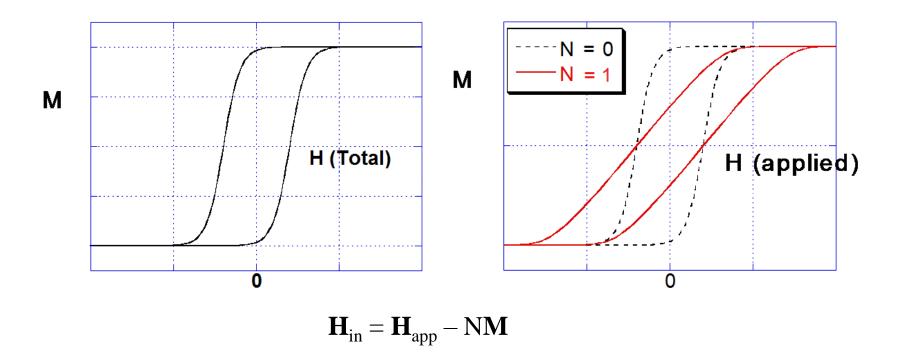
$$\mathbf{E}_{d} = \frac{1}{2} \mu_{0} \mathbf{M} \cdot \mathbf{H}_{d}$$
$$= \frac{1}{2} \mu_{0} \left(N_{a} \cos^{2} \alpha + N_{b} \cos^{2} \beta + N_{c} \cos^{2} \gamma \right) M^{2}$$

Perpendicular Media -

There is a global H_d H_d is non-uniform in places $H_d = 0$ in places H_d is positive!!



Effect of Demag Field on M-H Loop



- The loop is sheared with a slope of 1 (4π) .
- The only 'true' point is at H_c where M=0.
- In practice for N=1 (4π), exchange coupling reduces the loop shear

ANISOTROPY

Shape Anisotropy

$$u_{d} = \frac{1}{2} \mu_{0} \Delta N M_{s}^{2} \sin^{2}\theta = K_{s} \sin^{2}\phi$$

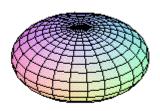
$$\Delta N = N_a - N_c$$

(Note: These are sample shapes, not energy surfaces.)

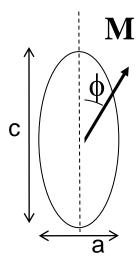
$$K_s > 0$$

prolate spheroid

- For c/a > 10, $H_c (T=0) > 1T$
- Not achieved because of incoherent reversal



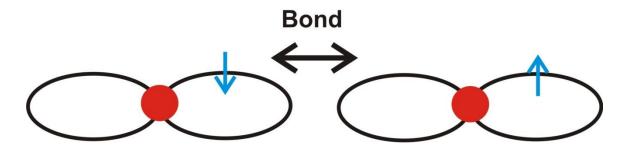
oblate spheroid



- Elongated particles for tape have c/a ~ 4 and H_c = 0.4T
- CoFe is used to maximise M_s

Crystalline anisotropy

- Due to spin-orbit coupling and chemical bonding of orbitals with local environment (crystalline electric field)
- Must have non-spherical atomic orbitals ($L_z \neq 0$) and non-spherical crystalline field.
- Dipole-dipole interactions are not strong enough to cause significant crystalline anisotropy.



- Occurs in all crystals but is usually weak in cubic materials.
- Very strong in hexagonal crystals e.g Co and Ba ferrite.
- Even stronger in some tetragonal cystals e.g. FePt

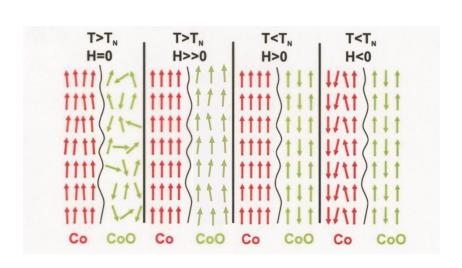
Other sources of anisotropy

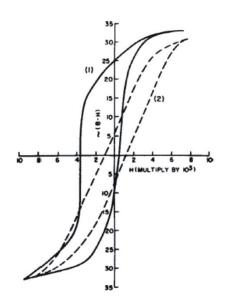
<u>Induced</u>

 Heat in a field, stress, plastic deformation (e.g., rolling), etc.

Exchange anisotropy

coupling between FM and AFM materials





Uniaxial Anisotropy

General case: $u = K_1 \sin^2 \theta + K_2 \sin^4 \theta + \dots$

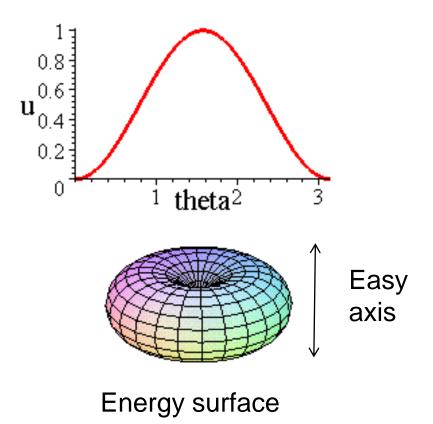
Second and higher-order terms are usually negligible

1st order positive

$$K_1 > 0$$
, $K_2 = 0$:

$$E_k = K_1 \sin^2 \theta$$

Mathematically the same as shape anisotropy for prolate spheroid.

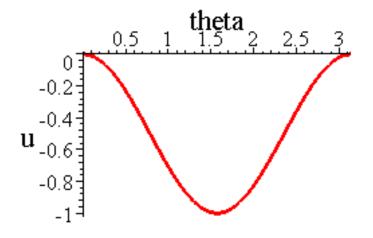


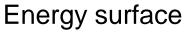
1st-order negative

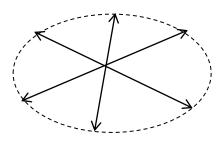
$$K_1 < 0, K_2 = 0$$
:

$$E_k = -|K_1| \sin^2 \theta = + |K_1| \cos^2 \theta$$
 (+ constant)

Mathematically the same as shape anisotropy for oblate spheroid.







Easy plane $(\theta = 90^\circ)$

Torque curves

Torque (per unit volume) exerted on crystal by **M**

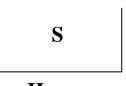
$$L = -\frac{dE}{d\theta}$$

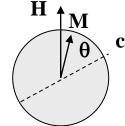
First order:

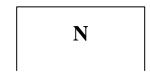
$$E_k = K_1 \sin^2 \theta$$

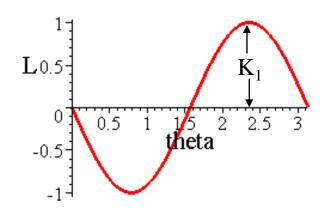
$$L = -2K_1 \sin \theta \cos \theta = -K_1 \sin 2\theta$$

- Unless the anisotropy is purely uniaxial torque curves are difficult (impossible) to interpret
- In practice only possible for single crystals



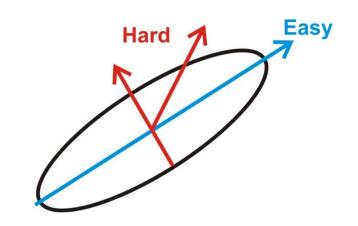


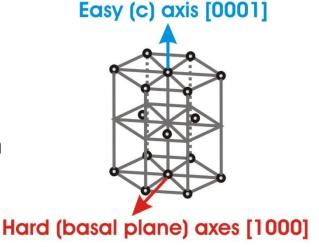




Examples of Uniaxial Anisotropy

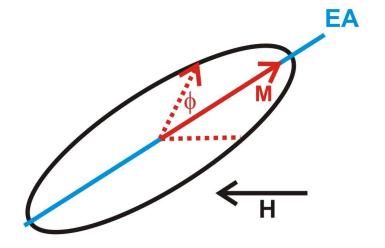
- Uniaxial anisotropy occurs in elongated particles used in tapes
- The M_s² term is why these particles are made from Fe₆₀Co₄₀
- It also occurs in materials with strong crystal asymmetry
- These include hcp Cobalt and Barium Ferrite
- Complex mixed anisotropies can occur in materials with elongation perpendicular to a c-axis, e.g. Ba-Ferrite platelets





Stoner-Wohlfarth Theory

- This theory explains the behaviour of single domain particles at T = 0.
- The particles must be uniaxial and align by moment rotation over an anisotropy barrier.



The energy is then:

$$E = KV \sin^2 \phi - \mu H \cos \theta$$

$$\therefore \frac{dE}{d\theta} = 2K\sin\theta\cos\theta - \mu_0 HM_s\sin(\phi - \theta)$$

For H perpendicular to EA, $\phi = 90^{\circ}$

$$\therefore 2K\sin\theta\cos\theta = \mu_0 HM_s\cos\theta$$

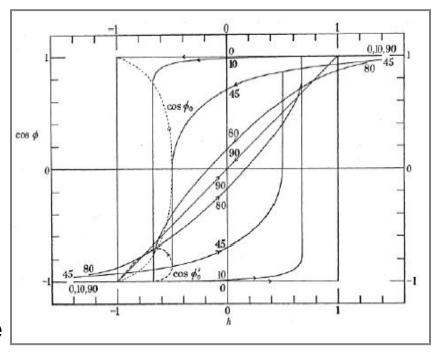
$$\therefore 2K \frac{M}{M_s} = \mu_0 H M_s$$
$$\therefore \frac{M}{M_s} = \frac{\mu_0 H M_s}{2K}$$

Therefore, the system saturates at:

$$H = \frac{2\mu_0 K}{M_s} = H_K$$
 Anisotropy Field

The Aligned Case

- The Anisotropy Field $H_K = \mu_0 2K/M_s$ is needed to pull the moment to 90°.
- It can then fall into either direction along the easy axis.
- This gives a square loop switching at H_K.
- For a small misalignment of 10° the switching field H_s falls by 30%



At 90° there is no hysteresis.

Critical Fields and Angles

The minimisation

$$\frac{dE}{d\theta} = 2KV\sin\theta\cos\theta - \mu_0 HM_s V\sin(\varphi - \theta) = 0$$

This gives a critical field and a critical angle that will cause switching.

Dividing by 2KV and setting $h = H/H_{\kappa}$ gives:

$$\sin\theta\cos\theta - h\sin(\varphi - \theta) = 0 \tag{1}$$

Now,

$$\frac{d^2E}{d\theta^2} = \cos^2\theta - \sin^2\theta + h\cos(\varphi - \theta) = 0 \tag{2}$$

Solving (1) and (2) simultaneously gives:

$$h_c^2 = 1 - \frac{3}{4}\sin^2 2\theta_c$$
$$\tan^3 \theta_c = -\tan \varphi$$

The Energy Barrier

Minimisation:

$$0 = \sin \theta (2KV \cos \theta + \mu_0 m_s VH)$$

$$E_{\min} = \mu_0 m_s V H$$

$$\cos\theta = -\frac{\mu_0 m_s VH}{2KV} = -\frac{\mu_0 m_s H}{2K}$$

$$E_{\text{max}} = KV(1 - \cos^2 \theta) - \mu_0 m_s VH \cos \theta$$

$$E_{\text{max}} = KV \left(1 - \frac{\mu_0^2 m_s^2 H^2}{4K^2} \right) + \frac{\mu_0^2 m_s^2 H^2}{2K^2}$$

$$E_{\text{max}} = KV \left(1 - \frac{\mu_0^2 m_s^2 H^2}{4K^2} + \frac{\mu_0^2 m_s^2 H^2}{2K^2} \right)$$

$$E_{\text{max}} = KV \left(1 + \frac{\mu_0^2 m_s^2 H^2}{4K^2} \right)$$

The Energy Barrier, ΔE:

$$\Delta E = E_{\text{max}} - E_{\text{min}}$$

$$\Delta E = KV \left(1 + \frac{\mu_0^2 m_s^2 H^2}{4K^2} \right) - \mu_0 m_s V H$$

$$= KV \left(1 + \frac{\mu_0^2 m_s^2 H^2}{4K^2} - \frac{\mu_0 m_s H}{K} \right)$$

Since

$$H_K = \frac{2K}{\mu_0 m_s}$$

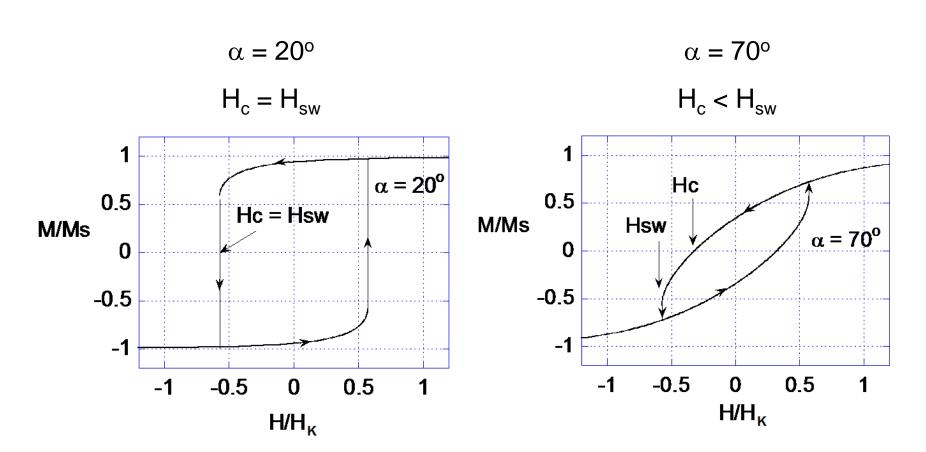
We can write

$$\Delta E = KV \left(1 + \frac{H^2}{H_K^2} - \frac{2H}{H_K} \right)$$

And so

$$\Delta E = KV \left(1 - \frac{H}{H_K} \right)^2$$

Coercivity and Switching Field

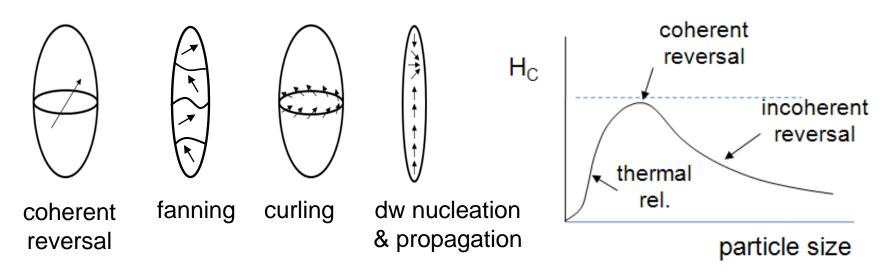


See magnetization reversal applet at

http://bama.ua.edu/~tmewes

Incoherent Reversal – Small Particles

- Particles with a single-domain remanent state may reverse incoherently, depending on size, shape, and material properties.
- Reversal modes can be complex and often best dealt with using micromagnetic simulations.
- Common reversal modes are fanning, curling and domain wall nucleation and propagation.



Thermal Activation

- All the models reviewed so far apply ONLY at T = 0.
- In real materials, the moments fluctuate about the easy axis in zero field to a degree depending on ΔE (= KV).
- Thus for particles with a small barrier reversal can be activated by thermal energy with a relaxation time

$$\tau^{-1} = f_0 \exp\left[\frac{\Delta E}{k_B T}\right]$$

• For a measurement time of 100s and $f_0 = 10^9 s^{-1}$, this gives a critical barrier for stability.

100s: $\Delta E = 25k_BT$ 10 years: $\Delta E = 40k_BT$

Particles with $\Delta E < 25k_BT$ are SUPERPARAMAGNETIC

 $\Delta E > 25k_BT$ are BLOCKED

Effects of Thermal Energy

$$KV\left(1-\frac{H}{H_K}\right)^2 = 25k_BT$$
 For t = 100s

The critical size

$$V_p = \frac{25k_BT}{K} \qquad \qquad \mathbf{H} = \mathbf{0}$$

$$H = 0$$

$$D_p = \sqrt[3]{\frac{150k_BT}{\pi K}}$$

The blocking temperature

$$T_B = \frac{KV}{25k_B} \qquad \qquad \mathbf{H} = \mathbf{0}$$

The coercivity

$$KV\left(1 - \frac{H_c}{H_K}\right)^2 = 25k_B T$$

$$H_c = \frac{2K}{M_s} \left[1 - \left(\frac{25k_B T}{KV}\right)^{\frac{1}{2}}\right]$$

$$\frac{H_c}{H_c(0)} = 1 - \left(\frac{V_p}{V}\right)^{\frac{1}{2}}$$

$$\frac{H_c}{H_c(0)} = 1 - \left(\frac{D_p}{D}\right)^{3/2}$$

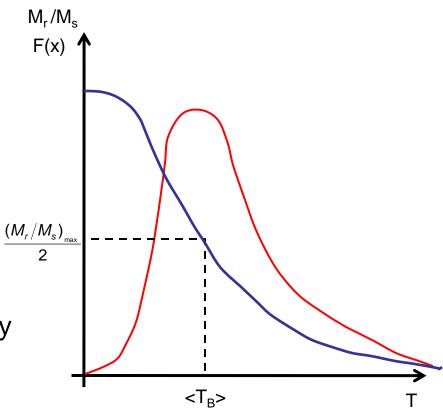
$$\frac{H_c}{H_c(0)} = 1 - \left(\frac{T}{T_B}\right)^{\frac{1}{2}}$$

Measurement of Blocking Temperatures

 At low T all grains are blocked and Mr/Ms is a maximum

$$\frac{M_r}{M_s} = 1$$
 aligned $\frac{M_r}{M_s} = 0.5$ random

- The median blocking temperature <T_B> is at the point where M_r/M_s is half its maximum value
- The distribution of blocking temperatures f(T_B) is given by the differential of the temperature decay of remanance
- The susceptibility/ temperature curve is related to f(T_B) but <T_B> is not at the peak



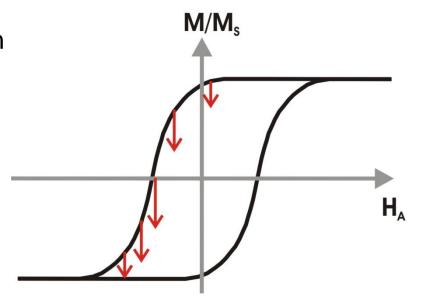
ΔΕ

Time Dependence

- Thermal energy can reverse moments and leads to time dependence.
- Because there is always a distribution of ΔE the time dependence is not exponential.
- The 'decay' is found generally to be linear in ln(t).

$$M(t) = M(0) \pm S \ln(t)$$

- The coefficient S(H) varies with H, peaking around H_c.
- This causes a sweep-rate dependence of H_c.



Cubic Anisotropy

$$\frac{E_{K}}{V} = K_{1}(\alpha_{1}^{2}\alpha_{2}^{2} + \alpha_{2}^{2}\alpha_{3}^{2} + \alpha_{3}^{2}\alpha_{1}^{2}) + K_{2}(\alpha_{1}^{2}\alpha_{2}^{2}\alpha_{3}^{2}) + \dots$$

$$\alpha_1 = \cos \gamma_1 = \sin \theta \cos \phi$$

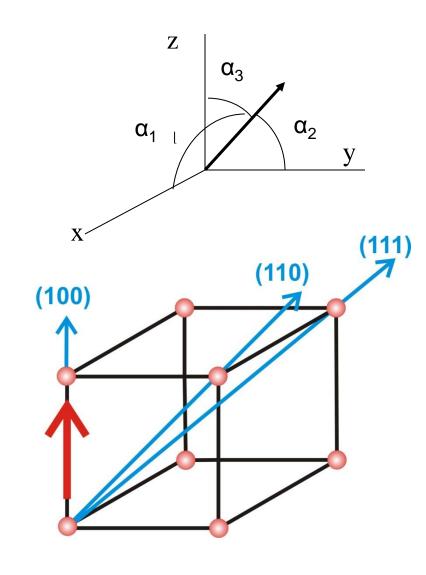
$$\alpha_2 = \cos \gamma_2 = \sin \theta \sin \phi$$

$$\alpha_3 = \cos \gamma_3 = \cos \theta$$

Can write 1st order term as

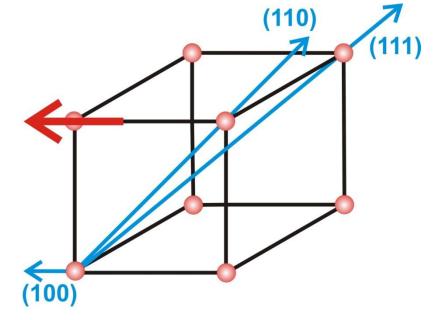
$$\frac{E_{K}}{V} = K_{1} \sin^{2} \theta \left(\frac{1}{4} \sin^{2} \theta \sin^{2} 2\phi + \cos^{2} \theta \right)$$

- In Fe (100) is easy and (111) is hard,
 K₁ > 1
- In Ni (111) is easy and (100) is hard,
 K₁ <0



Switching in Cubic Materials

- A cubic material switching at T = 0 is similar to the uniaxial case.
- The difference is that to get from (100) to (100) the moment does not have to cross the (111) hard direction.
- There is an intermediate route via (110) and a very complex energy surface.



This reduces the anisotropy field to:

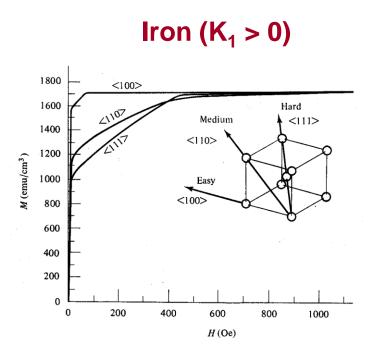
$$H_K = 0.64 \frac{K}{M_s}$$

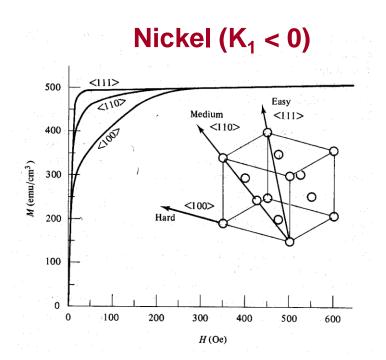
The energy barrier is reduced to:

$$\Delta E = \frac{KV}{4} \qquad (K>0)$$

$$\Delta E = \frac{KV}{12} \qquad (K<0)$$

Magnetisation Curves





- The reduction in ΔE makes Ni soft
- In Fe shape anisotropy is often dominant due to the M_s² term

$$K_{\rm s} = \frac{1}{2} \mu_0 M_{\rm s}^2 (N_c - N_a)$$

Temperature Dependence of Anisotropy

Crystalline anisotropy (low temperature regime):

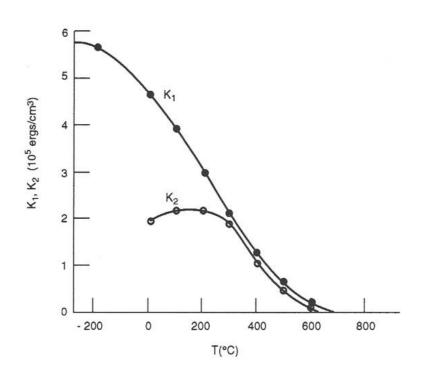
$$\frac{K_1(T)}{K_1(0)} \approx \left(\frac{M_s(T)}{M_s(0)}\right)^{l(l+1)/2}$$
($l = \text{symmetry}$)

Cubic: $K_1 \sim M^{10}$

Crystalline uniaxial: $K_1 \sim M^3$

Shape anisotropy: $K_s \sim M^2$

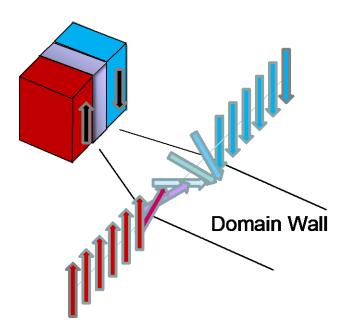
 K_s has no T dependence



Magnetic Domains

<u>Magnetic domain</u>: Region in which **M** is approximately uniform in direction.

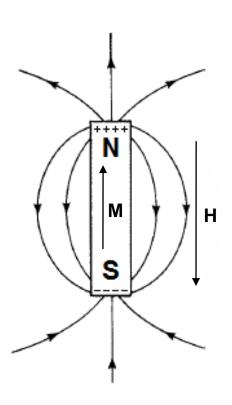
Domain wall: Boundary between adjacent domains in which **M** changes direction.



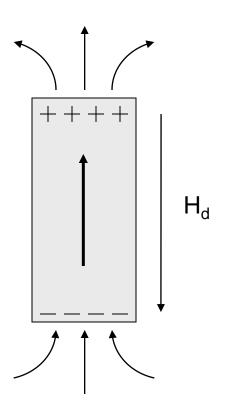
Terminology

- Magnetic poles is a term analogous to magnetic charges
- If a north pole is brought near a susceptible material, a south pole is induced causing attraction
- The magnetic field (of force) is represented by lines of flux
- The flux is the flow (of the ether)
 and the strength of the field is the
 density of lines/unit area B

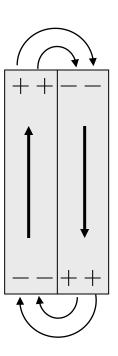
$$\mathbf{B} = \mu_0(\mathbf{H} + \mathbf{M})$$



Why Domains?



Large demagnetisation field and energy in external field.



Reduced demagnetisation field and external field.

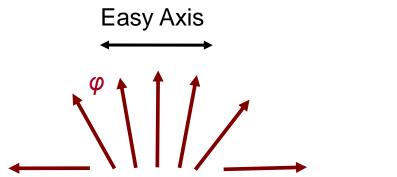
Domain Wall Energy

Domain wall costs exchange energy and anisotropy energy (and possibly magnetoelastic energy)

$$E_{ex} = -2JS^2 \sum \cos \theta_{ij}, \quad E_{anis} = K_u \sin^2 \phi$$

Narrow wall: large θ_{ij} , high E_{ex} , low E_{anis}

Wide wall: small θ_{ij} , low E_{ex} , high E_{anis}



$$\varphi_{E_0} = 1.5^{\circ}$$

$$\varphi_{Ni} = 0.62^{\circ}$$

Wall Energy Minimization -

$$\frac{\partial \sigma}{\partial N} = \frac{-JS^2 \pi^2}{N^2 a^2} + Ka = 0$$

$$N = \sqrt{\frac{JS^2 \pi^2}{Ka^3}}$$

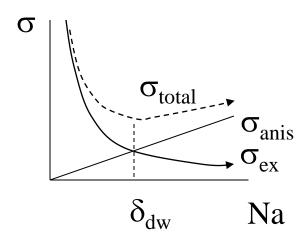
$$\delta_{dw} = Na = \sqrt{\frac{JS^2 \pi^2}{Ka}}$$

$$A = \frac{JS^2}{a}$$

$$\delta_{dw} = \pi \sqrt{\frac{A}{K}}$$

$$\sigma = \frac{JS^2\pi^2}{Na^2} + KNa = \frac{A\pi^2}{\pi\sqrt{\frac{A}{K}}} + K\pi\sqrt{\frac{A}{K}}$$

$$\sigma_{dw} = 2\pi \sqrt{AK}$$



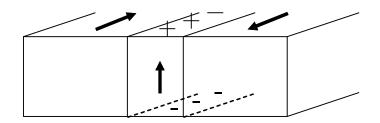
Example: hcp Co $K = 4 \times 10^5 \text{ J/m}^3$

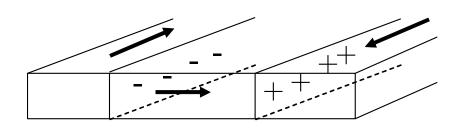
 $A = 1 \times 10^{-11} \text{ J/m}$ $\Rightarrow \delta_{dw} = 16 \text{ nm}$

Bloch and Néel Walls in Thin Films

Bloch

Néel





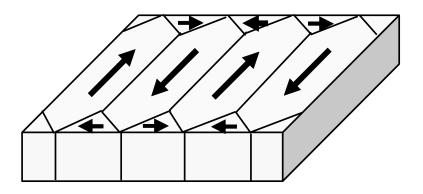
σ_{ms} Néel Bloch

Wall type determined by magnetostatic energy

Thin films: Néel walls

Thick films: Bloch walls

Closure Domains



- For cubic anisotropy, magnetostatic energy can be further minimized with closure domains without adding anisotropy energy. (Slight increase in domain wall energy.)
- In systems with strong uniaxial anisotropy e.g Co closure domains cannot form due to the hardness of the hard axis.

Domain Wall Pinning

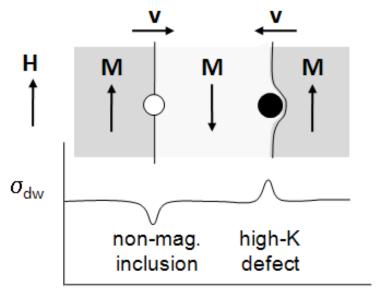
Domain wall motion limited by non-uniformities in wall energy due to non-magnetic inclusions or high-anisotropy defects (crystalline or magnetoelastic).

$$\frac{d\sigma_{dw}}{dx} = 4\frac{d}{dx}(AK)^{1/2}$$

If δ_{dw} << defect size,

$$\left(\frac{d\sigma_{dw}}{dx}\right)_{\text{max}} = 2M_s H_c$$

$$H_c = \frac{1}{2M_s} \left(\frac{d\sigma_{dw}}{dx} \right)_{\text{max}}$$

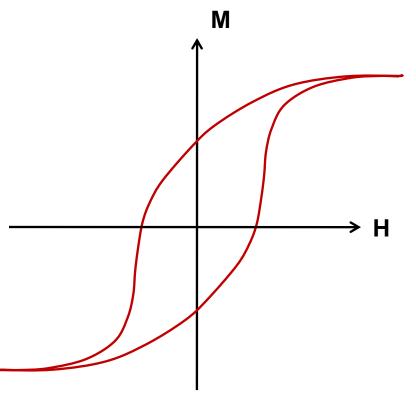


Switching Field Distributions (SFD)

- Only an isolated particle switches at a single field
- The SFD results from the distribution of ΔE

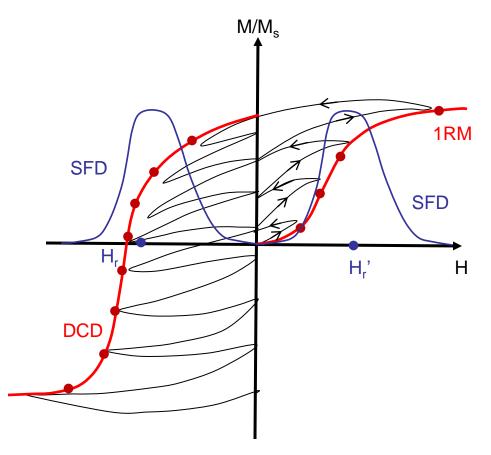
$$\Delta \mathbf{E} = KV(1 - \frac{\mathbf{H}}{\mathbf{H}_K})^2$$

- The SFD is due to:
 - Particle size distribution, usually lognormal
 - Distribution of K and Ms
 - Distribution of orientation
 - Dipole-Dipole exchange interactions



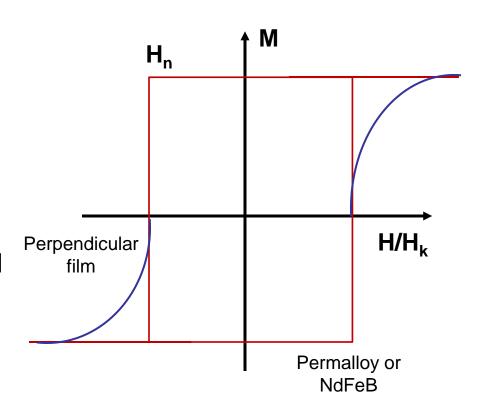
Measurement of SFD

- We can measure $f(\Delta E)$ from $f(T_B)$
- To get the SFD it is best to measure the remenance curve.
- This measures the irreversible switching only
- The differential gives the SFD for granular or domain wall pinned systems.



Nucleation and Propagation

- When a material reverses a reverse domain must nucleate.
- If H_n > H_{dw} then the domain sweeps through the sample giving a square loop.
- If H_n < H_{dw} the loop will be round as H_{dw} is overcome gradually
- In perpendicular films the loop can be round as H_d reduces



Summary

- Magnetisation produces effective surface and volume charges. Demagnetisation field and energy depends on sample shape.
- Magnetic anisotropy determines preferred orientations of the magnetisation. Source of anisotropy can be shape, crystalline, stress, exchange, ...
- Magnetisation can form domains to minimize magnetostatic energy. Domain wall width is determined by minimising exchange and anisotropy energy.
- Quasistatic magnetisation reversal in small particles can be described by coherent reversal model. Larger systems reverse incoherently.

References

- **B.D. Cullity**, *Introduction to Magnetic Materials*, Addison-Wesley, 1972. (revised version with C.D. Graham to appear Fall, 2008).
- **S. Chikazumi**, *Physics of Magnetism*, John Wiley and Sons, Ltd., 1984.
- R.C. O'Handley, Modern Magnetic Materials, John Wiley & Sons, 2000.
- R.L. Comstock, Introduction to Magnetism and Magnetic Recording, John Wiley & Sons, 1999.