

Nano Magnetics for *Biomimetic Cilia* Applications

Bethanie J.H. Stadler University of Minnesota

Sang-Yeob Sung, Mazin Maqablah, Anirudh Sharma, Andy Block, Eliot Estrine, Matt Hein

Liwen Tan, Xiaobo Huang, Ryan Cobian, Greg Norby, Madhukar Reddy, Patrick McGary

Pat Downey, Jung-Jin Park, Prof Alison Flatau

University of Maryland

Applications

- § Recording
 - Read Sensors
 - Bit patterned media (BPM)
- § Random Access Memory (RAM)
- § Cilia (NEMS)
- § Biomagnetics

Outine

- Ø Motivation: Artifical Cilia
- Ø Magnetostrictive Galfenol
- Ø Measuring Magnetic Multilayers
- Ø Applications: flow and vibration sensing

Overview- Advantages

ØNanosensors: increase in surface area increase in the device sensitivity

§ Consider two sensing elements, both 1 m thick

Advantages: NEMS

Ø Microelectromechanical Systems (MEMS)

- § Feynman "Plenty of Room at the Bottom" Dec 1959.
- § Newell, Science **161**, 1320 (1968).

Ø Why?

- § Reduce mass
- § Increase resonant frequency
- § Lower force constants

Ø Where?

- § Mirrors in optical communications
- § Flow control in ink-jet printers
- § Accelerometers in airbags
- § .. sensors, medical, displays, storage...

Lucent mirror array

Diameter ~.4mm

Engineering Structures

Ø "Machine" large numbers of integrated devices

Ø Planar Processing- *Top-Down* § Si processing follows microelectronics
 NEMS {

 § New ion- and e-beam lithography (100nm)
 § New materials
 Roukes, Caltech

Ø Self Assembly- Bottom-Up

Stadler, U Minnesota

20 nm

3um x 3um

The Problems of Motion

- Ø How to induce motion?
 - § Biomolecular motors
 - § Electric fields
 - § Thermal (_{th})
 - § Acoustic signals
 - § Magnetic fields

Ø How to detect motion?

- § Electric fields
- § Optical methods- most common
- § Tunneling current
- § Magnetic fields
- § Acoustic signals

A Model Acoustic Sensor: your ear!

Cilizatopom our diab

Yost and Nelson Fundamentals of Hearing

Artifical Cilia Sensors

Mechanical stimulus --- Magnetic Field --- Voltage

Artificial Cilia

Cilia: Natural and Synthetic

Yingchen Yang et al Proceedings of the National Academy of Science, published online Nov 28, 2006.
Boris P. Chagnaud et al The Journal of Neuroscience, (2008) V28(17) pp4479–4487.
Gijs J M Krijnen et al Nanotechnology 17 (2006) S84–S89
N. Izadi et al DTIP of MEMS & MOEMS (2007) Stresa, Italy.Militation of Micromechanics and Microengineering, 12 (2002) 655-661.

(a) mm -scale artificial lateral line sensors;[32] (b) flex ble m icropillar fbw sensor;[33]

flow 5000 μm (000 μm)

(c) 820mm tall,100mm wide, 10mm thick artificial hair cell cilium; [36]

15 19 SEI

(d) SU -8 hairs with modified base structure for enhanced sensitivity;[35]

(e)Array of SU-8 epoxy-based polymer havis 470 mm bng supported by SixNymembranes;[34]

MAG- X 22.0 PHOTO- 1

EHT- 20.0 KV HD- 23 nm

Outine

- Ø Motivation: Artifical Cilia
- Ø Magnetostrictive Galfenol
- Ø Measuring Magnetic Multilayers
- Ø Applications: flow and vibration sensing

Origin of Magnetostriction

q Spin-orbit coupling very strong in Rare-Earth based alloys

A Hence, very large magnetostrictive constants in FeDy, FeTb and TbDyFe alloys.

UNIVERSITY OF MINNESOTA

MOTIVATION FOR FeGa ALLOYS

MAGNETOSTRICTION

- q Large Magnetostriction
- q High Strength
- q Use of these properties in nanowire forms

Rolled Galfenol shows Flexibility

Building in a Uniaxial Anisotropy

Full magnetostriction with 45 MPa tension!

Sides are Strictly parallel

Varying Diameters of Nanopores

X20,000

 $1 \mu m$

SEI

5.0kV

Schwirn et al ACSNano (2008)

Pitzschel et al ACS Nano (2009)

WD 11.1mm

Norby and Stadler UMN 2009 unpublished

U of MN

Refining Electroplating using Hull Cell

EDS Simulations for Thicknesses

Schematic of characteristic x-ray generation in specimen and collection in solid state detector, and Monte Carlo simulations of electron scattering trajectories vs. depth for (b) 170 nm $Fe_{80}Ga_{20}$ and (c) 1000 nm $Fe_{80}Ga_{20}$ films on a brass substrate with a beam energy $E_0=20$ keV

Phase Diagram of Electrochemical Galfenol

See Madhukar Reddy et al, Electrochemistry Comm 2012

Nanowires in 40 nm Templates

Exposed Galfenol Nanowire Arrays

Non-uniformities Multiply

ØOutgrowth blocks other wires

UNIVERSITY OF MINNESOTA

Rotating Electrode contols length distribution

High and low rotation gives low standard dev, but low rotation also has slow mass transfer

Repeatability of Nanowire Dimensions

rotation

pulsed

Cu seed layer

High Quality FeGa (Galfenol) structure

TEM confirms XRD

Outine

- Ø Motivation: Artifical Cilia
- Ø Magnetostrictive Galfenol
- Ø Measuring Magnetic Multilayers
- Ø Applications: flow and vibration sensing

Magnetic Characterization

<u>_____</u>

Barcode wires have easy axes along wire axes

It has been theoretically predicted that at low applied field angles, small diameter nanowires undergo reversal by T mode, whereas larger diameter nanowires undergo reversal by V mode.

However, at applied field angles approaching 90°, CR mode is preferred.

Vary segment lengths for best magnetic control

The ratio of the lengths of FeGa and Cu segments determined the curvature of the 36 bell curves: the smaller the ratio, the flatter the curve

UNIVERSITY OF MINNESOTA

Vector VSM

M_y - M_x plots for (a) Parallel (b) perpendicular applied fields: shows the cooperative rotation of moments in adjacent Fe-Ga segments.

MFM Results Show Moment Rotation- UMD

150nm x 150 nm FeGa separated by 4-6um Cu

Magnetizaton Rotation- UMD

Vary Field

550 Oe

Manipulator Stage for Mechanical Testing- UMD

UNIVERSITY OF MINNESOTA

Tensile Procedure

Ø Extract wire from array, clamp to opposing AFM probes

- § System is static while recording data
- § All measurements made by image analysis

Measuring Resonance

UNIVERSITY OF MINNESOTA

Bimodal Distributions are not always undesirable!

Outine

- Ø Motivation: Artifical Cilia
- Ø Magnetostrictive Galfenol
- Ø Measuring Magnetic Multilayers
- Ø Applications: flow and vibration sensing

Underwater cilia

Ø How fish "hear"
Ø How we hear fish
§ Piezoelectric membrane arrays

Initial Flow and Vibration Sensors

Microfluidic channels Diagnostic Biosensors

UNIVERSITY OF MINNESOTA

Vibration: Shake Table

GMR signal

Time (sec) Vibrations from 1Hz to 5Hz

5Hz Excitation

Characteristic Double Frequency

Only seen with nanowires under the GMR sensor, not in controls

Ultrasound

Ultrasound Transducer Arrays

Linear vs Areal Arrays

UNIVERSITY OF MINNESOTAinear_array_beam_pattern_closeup.mpeg

Nanowire Arrays with Broadband Response

Ultrasound Response Measurement Apparatus

Biomagnetics

Manipulation of Nanowires

Summary

- Ø Templates with controlled parameters
 - § directional anisotropy
 - § long range order, large area, small pores
- Ø A Galfenol electroplating
- Ø Promising nanowires for:
 - § Magnetic sensors
 - § Vibrations sensors
 - § Energy harvesting
 - § Flow detection
 - § Much more

Review

- Ø Motivation: Artifical Cilia
- Ø Magnetostrictive Galfenol
- Ø Measuring Magnetic Multilayers
- Ø Applications: flow and vibration sensing

Applications

- § Recording
 - Read Sensors
 - Bit patterned media (BPM)
- § Random Access Memory (RAM)
- § Cilia (NEMS)
- **§** Biomagnetics

UNIVERSITY OF MINNESOTA

Acknowledgements

- Ø Marilyn Wun-Fogle, Jim Restorff, Norris Lindsey NSWC Carderock Division
- Ø Jan Lindberg, Office of Naval Research #N000140310953 and #N000140410583 and MURI
- Ø National Science Foundation for grant #CMS0329975.
- Ø University of Minnesota's
 - **§ MRSEC #DMR0212302**

§ NNIN