Fundamentals of Magnetism

Albrecht Jander

Oregon State University

Part I: H,M,B,χ,μ **Part II: M(H)**

Magnetic Field from Current in a Wire

Ampere's Circuital Law:

Biot-Savart Law:

$$\oint \vec{H} \cdot d\vec{l} = I \qquad \qquad d\vec{H} = \frac{Id\vec{l} \times \hat{R}}{4\pi |\vec{R}|^2}$$
$$H = \frac{I}{2\pi r} \text{ [A/m]}$$

Magnetic Field from Current Loop

Use Biot-Savart Law:

In the center:

$$d\vec{H} = \frac{Id\vec{l} \times \hat{R}}{4\pi \left|\vec{R}\right|^2}$$

$$H = \frac{I}{2r}$$
 [A/m]

Magnetic Field in a Long Solenoid

Inside, field is uniform with:

$$H = \frac{NI}{L} \text{ [A/m]} \qquad H = J_S \text{ [A/m]}$$

Magnetic Field from Small Loop (Dipole)

Magnetic Field from Small Loop (Dipole)

For *R* >> *r*

$$H = \frac{IA}{4\pi R^3} \left[2\hat{r}\cos(\theta) + \hat{\theta}\sin(\theta) \right]$$
 [A/m]

Magnetic (dipole) moment: $\vec{m} = I\vec{A}$ [Am²]

Magnetic Poles and Dipoles

Magnetic Field of a Dipole

Orbital Magnetic Moment

•Electrons orbiting a nucleus are like a circulating current producing a magnetic field.

•For an electron with charge q_e orbiting at a radius R with frequency f, the Orbital Magnetic Moment is

$$m = IA = -q_e f \pi R^2 \qquad \text{[Am^2]}$$

• It also has an Orbital Angular Momentum

$$L = m_e vR = m_e 2\pi R f R$$

• Note:

e: $\frac{m}{L} = \frac{-q_e}{2m_e}$ m and L are in opposite directions!

Orbital Moment is Quantized

Bohr model of the atom

•DeBroglie wavelength is:

$$\lambda_{dB} = \frac{h}{m_e v}$$

•Bohr Model: orbit must be integer number of wavelengths

$$2\pi R = N\lambda_{dB} = N\frac{h}{m_e v} = N\frac{h}{m_e 2\pi Rf}$$

• Thus the orbital magnetic moment is quantized:

$$m = -q_e f \pi R^2 = N \frac{h}{2\pi} \frac{q_e}{2m_e} = N \frac{\hbar q_e}{2m_e}$$

Magnetic moment restricted to multiples of

Niels Bohr (1885-1962)

Scanned at the American Institute of Physics

Louis de Broglie (1892-1987)

Spin ()

- Spin is a property of subatomic particles (just like charge or mass.)
- A particle with spin has a magnetic dipole moment and angular momentum.
- Spin may be thought of *conceptually* as arising from a spinning sphere of charge. (However, note that neutrons also have spin but no charge!)

Pauli and Bohr contemplate the "spin" of a tippy-top

• When measured in a particular direction, the measured angular momentum of an electron is

$$L_z = s_z \hbar = \pm \frac{\hbar}{2} \qquad s_z = -s, -s + 1...s$$

• When measured in a particular direction, the measured magnetic moment of an electron is

$$m_z = s_z \frac{\hbar q_e}{m_e} = \pm \mu_B$$

- We say "spin up" and "spin down"
- Note: $\frac{m}{L} = \frac{-q_e}{m_e}$

Compare:			
<u>Spin</u>	<u>Orbital</u>		
$m_z = \pm \mu_B$	$m_z = N\mu_B$		
$\frac{m}{m} = \frac{-q_e}{q_e}$	$\frac{m}{m} = \frac{-q_e}{q_e}$		
$L m_e$	$L 2m_e$		

Stern-Gerlach Experiment - 1922

Demonstrated that magnetic moment is quantized with $\pm \mu_B$

Walther Gerlach, Otto Stern (1922). "Das magnetische Moment des Silberatoms". *Zeitschrift für Physik A Hadrons and Nuclei* **9**.

Otto Stern (1888-1969)

Institute of Physics

Walter Gerlach (1889-1979)

Stern-Gerlach Experiment

to verelater the Torte, andie the Fortschang in arthest (vich fiteste J. Thysik VIII. Jeike 110. 1921.): Fu experimentalle kacheris Richt upguensie 10 mm Wir gretatieren zur Ardstigung Herne Waerungerleit

Gerlach's postcard, dated 8 February 1922, to Niels Bohr. It shows a photograph of the beam splitting, with the message, in translation: "Attached [is] the experimental proof of directional quantization. We congratulate [you] on the confirmation of your theory." (Physics Today December 2003)

Quantum Numbers of Electron Orbitals

•Electrons bound to a nucleus move in orbits identified by quantum numbers (from solution of Schrödinger's equation):

- n 1... principal quantum number, identifies the "shell"
- ℓ 0..n-1 angular momentum q. #, type of orbital, e.g. s,p,d,f
- m_{ℓ} - ℓ .. ℓ magnetic quantum number
- $m_s +\frac{1}{2}$ or $-\frac{1}{2}$ spin quantum number

For example, the electron orbiting the hydrogen nucleus (in the ground state) has:

$$n=1, \ell=0, m_{\ell}=0, m_{s}=+\frac{1}{2}$$

In spectroscopic notation: 1s1

Spin and Orbital Magnetic Moment

• Total orbital magnetic moment (sum over all electron orbitals)

$$m_{tot_orbital} = \mu_B \sum m_\ell$$

• Total spin magnetic moment

$$m_{tot_spin} = 2\mu_B \sum m_s$$

full orbitals: no net moment

E.g. Iron:

How to fill remaining d orbitals (ℓ =2) 6 electrons for 10 spots:

1s²2s²2p⁶3s²3p⁶3d⁶4s²

Based upon ¹²C. () Indicates the mass number of the most stable isotope.

For a description of the data, visit physics.nist.gov/data

NIST SP 966 (September 2003)

Magnetization, \vec{M}

0

What is H here?

Atomic density: N/vol

[1/m³]

Magnetic moment per unit volume:

$$\vec{M} \stackrel{\text{def}}{=} \frac{\vec{m}}{vol}$$
 [A/m]

Equivalent Surface Current

Atomic density: N/vol

[1/m³]

Magnetic moment per unit volume:

$$\vec{M} \stackrel{\text{def}}{=} \frac{\vec{m}}{vol}$$
 [A/m]

Equivalent Surface Current

Atomic magnetic moment:

$$\overrightarrow{m} = I \overrightarrow{A}$$
 [Am²]

Atomic density: N/vol

[1/m³]

Equivalent surface current:

$$\vec{J}_S = \vec{M} imes \hat{n}$$
 [A/m]

Magnetic Pole Model

0

What is H here?

Atomic density: N/vol

[1/m³]

Magnetic moment per unit volume:

$$\vec{M} \stackrel{\text{def}}{=} \frac{\vec{m}}{vol}$$
 [A/m]

Equivalent Surface Pole Density

Atomic magnetic moment:

$$\overrightarrow{m}=q_{m}\overrightarrow{d}$$
 [Am²]

Atomic density: N/vol

 $[1/m^3]$

Magnetic pole density:

$$ho_{ms} = \vec{M} \cdot \hat{n}$$
 [A/m]

 $M = 10^{6}$ [A/m]

 $vol = 14 \cdot 10^{-6}$ [m³]

m = 14 [Am²]

 $J_{S} = 10^{6}$ [A/m] I = 20000 [A] $A = 7.07 \cdot 10^{-4}$ [m²] m = IA = 14 [Am²]

 $M = 10^{6}$ [A/m]

 $vol = 14 \cdot 10^{-6}$ [m³]

m = 14 [Am²]

 $\rho_{ms} = 10^{6} \text{ [A/m]}$ $A = 7 \cdot 10^{-4} \text{ [m^2]}$ $q_m = 700 \text{ [Am]}$ $d = 2 \cdot 10^{-2} \text{ [m]}$ $m = q_m d = 14 \text{ [Am^2]}$

Result is the <u>same external</u> to magnetic material.

Hint: we are far away from all the dipoles!!!

Result is <u>different</u> inside the magnetic material.

The Constitutive Relation

$$\vec{B} = \mu_0(\vec{H} + \vec{M})$$

- *B* = Magnetic flux density [Tesla]
- *H* = Magnetic field, "Magnetizing force" [A/m]
- M = Magnetization [A/m]
- μ_0 = Magnetic constant, "Permeability of free space" [Tesla-m/A] [Henry/m] [N/A²]

Note, in vacuum, *M* is zero:

$$\overrightarrow{B} = \mu_0 \overrightarrow{H}$$

What is μ_o ?

 μ_0 comes from the SI definition of the Ampere:

The ampere is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross section, and placed 1 meter apart in vacuum, would produce between these conductors a force equal to 2×10^{-7} newton per meter of length.

Maxwell's Equations (Magnetostatics)

With:

$$\vec{B} = \mu_0(\vec{H} + \vec{M})$$
$$\nabla \cdot \vec{B} = \mu_0(\nabla \cdot \vec{H} + \nabla \cdot \vec{M}) \qquad \nabla \cdot \vec{H} = -\nabla \cdot \vec{M}) = \rho_m \quad [A/m^2]$$

Magnetic charge density i.e. magnetic charge/volume

Boundary Conditions

The perpendicular component of B is continuous across a boundary

The transverse component of H is continuous across a boundary (unless there is a <u>true</u> current on the boundary)

Demagnetizing Fields

Μ

H_d

 $H_d \propto M$

 $H_d = -NM$ **Demagnetizing Factor**

Demagnetizing Factors

 Table 2.2. Demagnetizing Factors for Rods and Ellipsoids Magnetized Parallel to the Long Axis (after Bozorth^{G.10})

Dimensional Ratio <i>k</i>	Rod	Prolate Ellipsoid	Oblate Ellipsoid
Katio k	Rod	Zmpron	1
1	0.27	0.3333	0.3333
2	0.14	0.1735	0.2364
5	0.040	0.0558	0.1248
10	0.0172	0.0203	0.0696
20	0.00617	0.00675	0.0369
50	0.00129	0.00144	0.01472
100	0.00036	0.000430	0.00776
200	0.000090	0.000125	0.00390
500	0.000014	0.0000236	0.001567
1000	0.0000036	0.0000066	0.000784
2000	0.0000009	0.0000019	0.000392

Demag. fields in ellipsoids of revolution are uniform.

$$H_d = -NM$$
$$N_x + N_y + N_z = 1$$

Demagnetizing Factors: Special Cases $H_d = -NM$ $N_x + N_y + N_z = 1$

Example: Ba-Ferrite Sphere

Barrium Ferrite:

M~150 [kA/m]

Example: Ba-Ferrite Ellipsoid

Barrium Ferrite:

 $M \sim 150$ [kA/m]

|--|--|

Μ

Η	B
$N_x = N_y = 0.45$	$\overrightarrow{B} = \mu_0(\overrightarrow{H} + \overrightarrow{M})$
$H_d = -NM$	$\overrightarrow{B}=\mu_0(82.5~ ext{[kA/m]})$
$H_d = -67.5 [\text{kA/m}]$	$\overrightarrow{B} = 0.104$ [Tesla]

Example: Ba-Ferrite Ellipsoid

Barrium Ferrite:

 $M \sim 150$ [kA/m]

\mathbf{M}	Η	B
	$N_z = 0.1$	$\overrightarrow{B} = \mu_0(\overrightarrow{H} + \overrightarrow{M})$
	$H_d = -NM$	$\overrightarrow{B} = \mu_0 (135 \text{ [kA/m]})$
	$H_d = -15$ [kA/m]	$\overrightarrow{B} = 0.17$ [Tesla]

Susceptibility and Permeability

Example, Long Rod in a Long Solenoid

I =1 <u>A</u>

$$\mu_r = 1000 \qquad \chi = 999$$

N/L = 1000/m

$$H = \frac{NI}{L} = 1 \text{ [kA/m]}$$

$$M = \chi H = \chi \frac{NI}{L} = 999 \text{ [kA/m]}$$

$$B = \mu_0 (H + M) = \mu_0 (1000 \text{ kA/m}) = 1.25 \text{ [Tesla]}$$

or:

$$B = \mu_0 \mu_r H$$
= 1.25 [Tesla]

Example, Soft Magnetic Ball in a Field

 $M = \chi H = \chi (H_{ext} + H_d) = \chi (H_{ext} - NM)$

$$M = \frac{\chi}{1 + N\chi} H_{ext}$$
$$\chi_{eff} = \frac{\chi}{1 + N\chi} < 3!!!$$

Example, Thin Film in a Field

$$M = \chi H_{inside} = \chi (H_{ext} + H_d) = \chi (H_{ext} - M)$$

$$M = \frac{\chi}{1+\chi} H_{ext}$$

$$H_{inside} = \frac{1}{1+\chi} H_{ext} \qquad B_{inside} = B_{ext}$$

Why?

Magnetic Energy and Shape Anisotropy

Coffee Break!