Overview

Introduction

Interlayer exchange coupling

Giant and tunneling magnetoresistance

Current-induced magnetization dynamics

Pure spin current

Magnetic molecules

Conclusions
Outline: Pure spin current

• What is a pure spin current?
• Generation and detection of pure spin currents in lateral spin-valves (LSV)
• Example: In-situ FIB fabrication of LSV
• Pure spin current induced magnetization switching
Pure spin currents

Unpolarized current:
\[\frac{dQ}{dt} \neq 0 \]
\[\frac{d\vec{s}}{dt} = 0 \]

Spin-polarized current:
\[\frac{dQ}{dt} \neq 0 \]
\[\frac{d\vec{s}}{dt} \neq 0 \]

Pure spin current:
\[\frac{dQ}{dt} = 0 \]
\[\frac{d\vec{s}}{dt} \neq 0 \]

• transport spin momentum
• without (net) charge motion
• do not give rise to Oersted fields
• do not create resistive voltage drops
• do not produce Joule heating

⇒ Potential to significantly reduce power dissipation of (spin-)electronic devices
Generation and detection of pure spin currents

Non-local transport measurement in a “lateral spin valve”

Pure spin currents in lateral spin-valves (LSV)

Generation:

- Spin accumulation at FM/NM interface
 ⇒ splitting of chemical potential $\mu^{\uparrow, \downarrow}$
 ⇒ diffusion of spins due to $\nabla \mu^{\uparrow, \downarrow}$

Detection:

- Detection of spin accumulation with a FM probe located within the spin diffusion length:
 - Parallel alignment: \Rightarrow Probe potential adjusts to μ^{\uparrow}
 - Antiparallel alignment: \Rightarrow Probe potential adjusts to μ^{\downarrow}

First observation of pure spin currents

- Pure Al bulk material
- Permalloy injector and detector

F. J. Jedema et al., Nature 410, 345 (2001);
Outline: Pure spin current

- What is a pure spin current?
- Generation and detection of pure spin currents in lateral spin-valves (LSV)
- Example: In-situ FIB fabrication of LSV
- Pure spin current induced magnetization switching
In-situ focused ion-beam (FIB) fabrication of a LSV

In-situ SEM of lateral spin-valve with topmost FM layers

In-situ fabrication of lateral spin-valves

Ex situ
- 50 nm Cu contacts covered by 2 nm Au grown by MBE through shadow mask
- Wire bonding to 4-probe sample holder
- Hole aperture to protect contact and contact pads

In situ
- Ar sputtering to remove Au cap layer
- Definition of magnet positions by FIB
- FIB Structuring of the Cu (red) leads
- Deposition of Co (blue) layer by thermal evaporation
- Structuring of Co film to nanomagnets
SEM and SEMPA of an in-situ prepared LSV

Widths of FMs are 220 nm for FM1 and 280 nm for FM2

⇒ Both Co electrodes reveal a multi-domain state that clearly deviates from the single-domain behavior expected for the wire dimensions

Reason for multi-domain formation

Narrow Co structures (220 and 280 nm) with different properties:

LSV with narrow FMs
Co on Cu after FIB
Growth at 170 K

Co on Cu after FIB
Growth at 270 K
⇒ Larger grains

Co on Cu, no FIB
Growth at 170 K
⇒ Smoother Cu

⇒ FIB-induced roughness of Cu substrate gives rise to formation of multi-domain state in the Co electrodes

Origin of FIB-induced roughness

- Both Co and Cu films are polycrystalline due to the amorphous SiO$_x$ substrate.
- FIB sputter yield depends on orientation of crystallites via channeling and atomic layer densities.

0.5 mAs/cm2 per cycle

⇒ FIB-induced roughness with a typical lateral size of about 250 nm

SEM and SEMPA of LSV with wide FMs

Width of FMs (480 nm for FM1 and 350 nm for FM2) is larger than the typical lateral size of the FIB-induced roughness

⇒ Landau-like magnetization pattern in the left Co element
⇒ Almost single-domain state in the right Co element

Switching fields of AMR and R_S are correlated (dashed lines).

R_S of up to 0.9 mΩ indicates clean interfaces.

Pure spin current induced magnetization switching

Injector and detector are Py nanomagnets (80×170 nm2 and 75×170 nm2)

Overview

Introduction

Interlayer exchange coupling

Giant and tunneling magnetoresistance

Current-induced magnetization dynamics

Pure spin current

Magnetic molecules

Conclusions
Outline: Magnetic molecules

- Why magnetic molecules?
- Challenges of the interface between molecule and substrate/electrode
- Example: Nd phthalocyanine double-decker (NdPc$_2$) molecules on Cu(100)
Single molecule magnets (SMM)

Molecules with
- Magnetic moment
- Zero-field splitting
 ⇒ Anisotropy
 ⇒ Enhanced relaxation time
 ⇒ Blocking temperature

L. Bogani und W. Wernsdorfer, Nat. Mat. 7, 179 (2008)

Length scales in magnetism

<table>
<thead>
<tr>
<th>Wind turbine</th>
<th>Anti-theft device</th>
<th>Magnetic recording</th>
<th>Molecular magnetism</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 m</td>
<td>1 mm</td>
<td>1 ∝ m</td>
<td>1 nm 1 Å</td>
</tr>
</tbody>
</table>

macropscopic nanoscopic

Energy

Thermal excitation
Quantum tunneling
Quantum number

L. Bogani und W. Wernsdorfer, Nat. Mat. 7, 179 (2008)
Molecular spintronics

Combines molecular electronics and spintronics to exploit the rich diversity and functionality of molecules and the spin degree of freedom for novel nanoelectronic device concepts

Example of spintronic functionality:
SMM in ferromagnet/non-magnet junction

Parallel alignment: R_p

Antiparallel alignment: R_{AP}

Charge transport: $R_p < R_{AP}$

⇒ Spintronic functionality

L. Bogani und W. Wernsdorfer, Nat. Mat. 7, 179 (2008)
Realization of molecular spintronics

Molecules need to be supported
- How do molecules adsorb on surfaces?
- Do they decompose upon deposition?
- What is their adsorption geometry and site?

Adsorption properties on substrates

Molecules need to be electrically contacted
- Role of metal-molecule interaction?
- Impact of metal-molecule hybridization?
- Impact of metal surface on magnetic moment?
- Do the “magnetic” orbitals contribute to charge transport?

Electronic structure of absorbed/ contacted molecules
Molecule-substrate interaction

Physisorption (weak bonding)
- van-der-Waals (dipole-dipole) forces
⇒ Little impact on electronic structure

Chemisorption (strong bonding)
- Ionic and covalent bonding
- Charge transfer and hybridization
⇒ Strong impact on electronic structure
⇒ Formation of hybrid orbitals
⇒ May influence [1,2] or quench the molecular magnetic moment [3]

Lanthanide double-decker phthalocyanines (LnPc$_2$)

- Intramolecular interaction between the Pc ligands and the central Ln ion is mainly of electrostatic nature.
- Relative angle of 45° between the two Pc ligand.
- Some LnPc$_2$, e.g. TbPc$_2$, DyPc$_2$, and HoPc$_2$ [1,2] are known to be SMMs with blocking temperatures of several tens of Kelvin.
- Accessing Tb 4f-states in TbPc$_2$ by STM is not possible [3].

“bis(phthalocyaninato)-neodymium(III)”

Neodymium double-decker phthalocyanine (NdPc_2)

- NdPc_2 is a promising SMM, but has not examined under this aspect

Lanthanoides:

- Increasing ionic radius
- Increasing spatial extent of 4f orbitals
- Nd 4f-states move closer to the Fermi level

\Rightarrow Nd 4f-states can be accessed and imaged by STM
NdPc$_2$ on Cu(100)

- Molecules sublimated at 850 K
- Metal substrate held at 300 K
- STM in UHV and at 4 K; etched W tips
- Bias voltage modulation (30 mV, 2.7 kHz) for dI/dV-spectra and dI/dV-maps

2 types of molecules, each in 2 orientations:

⇒ Double-decker (NdPc$_2$) and single-decker (NdPc, Pc)
⇒ NdPc$_2$ molecules break up upon deposition
2 types of molecules, each in 2 orientations:

⇒ Double-decker (NdPc₂) and single-decker (NdPc, Pc)

⇒ NdPc₂ molecules break up upon deposition
Single-decker NdPc on Cu(100) ⇒ rotated with respect to [001] axis by ±(28±2)° ⇒ Agreement with theoretical prediction [1]: ±26° from [001] axis

Double-decker NdPc$_2$ on Cu(100)

Upper ligand is imaged and its axes are rotated with respect to [001] axis by $\pm(71\pm2)^\circ$.

Consider twist between ligand Pc: $\pm(26+45)^\circ = \pm71^\circ$

\Rightarrow Absorption position is determined by the binding of lower Pc to the substrate.
NdPc$_2$ on Cu(100): Calculations

- NdPc$_2$ on 5 layer of Cu
- GGA+U calculations ($U=2.2$ eV)
- Including van-der-Waals forces

Optimized and relaxed structure:
- NdPc$_2$ center above Cu hollow site
- Two symmetric and degenerate positions

We calculate:
- Contours of constant DOS
- Local DOS versus V
- Maps of DOS at given V_{bias}

We measure:
- \rightarrow STM topography
- \rightarrow dI/dV-curves
- \rightarrow dI/dV-maps at V_{bias}
NdPc$_2$ on Cu(100)

⇒ Direct detection of spin-polarized 4f-states
⇒ Lower Pc strongly hybridizes with substrate
⇒ Upper Pc keeps molecular-type states
NdPc$_2$ on Cu(100)
NdPc$_2$ on Cu(100)

⇒ Direct detection of spin-polarized Nd 4f-states by STM

⇒ Prospects for electrical manipulation/detection of molecular spin

Theory / Experiment

Experiment / Theory
Two atomic layers of Fe on W(110): Model system

Model system for magnetic surfaces

- 1st AL Fe is in-plane magnetized
- 2nd AL Fe is out-of-plane magnetized
Future experimental route

Requirements:
- Magnetic tip
- “Clean” surface
- Certain density of intact molecules
- Magnetic coupling of molecule to surface
<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1986</td>
<td>Discovery of magnetic interlayer exchange coupling (Grünberg)</td>
</tr>
<tr>
<td>1988</td>
<td>Discovery of GMR (Grünberg, Fert)</td>
</tr>
<tr>
<td>1995</td>
<td>Realization of TMR at room temperature (Miyazaki, Moodera)</td>
</tr>
<tr>
<td>1996</td>
<td>Prediction of spin-transfer effects (Slonczewski, Berger)</td>
</tr>
<tr>
<td>1998</td>
<td>First commercial harddisks with GMR sensors (IBM)</td>
</tr>
<tr>
<td>2000</td>
<td>Experimental observation of spin-transfer effects (Cornell)</td>
</tr>
<tr>
<td>2001</td>
<td>Commercial harddisks with AFC media (IBM)</td>
</tr>
<tr>
<td>2004</td>
<td>Giant TMR across epitaxial MgO barriers (Parkin, Yuasa)</td>
</tr>
<tr>
<td>2006</td>
<td>Commercialization of MRAM based on TMR (Freescale)</td>
</tr>
<tr>
<td>2007</td>
<td>Demo: MRAM based on giant TMR and spin-transfer (Hitachi)</td>
</tr>
</tbody>
</table>

... short transfer times from basic research to applications in mass markets

... there is more to come: e.g. quantum information technology
Future of Spintronics

Spin-dependent functionality

Past

GMR TMR

layers interfaces

magentic sensors
nonvolatile memory

innovative device concepts
e.g. magnetologic
(short term)

quantum information
processing
(long term vision)

spin torque
spin inject.
spin Hall

interfaces
nanostructures

nanomagnetism
spin transport and coherence
magneto- and spindynamics
nanoferronics

quantum wires
quantum dots

Presence

Future

Degree of spin control
Spintronics relies on manipulating and detecting magnetization states of nm-sized FM objects.

Spin-transfer processes enable such functionalities:

- **Established:** GMR and IEC in HDD
- **Currently:** Spin-transfer torque in MRAMs
- **Future:** Pure spin currents in low-dissipation devices
- **Future:** Magnetic molecules in molecular transistors and in artificial neuronal magnetic networks
Thanks …

- Sarah Fahrendorf, Julius Mennig, Saban Tirpanci, Frank Matthes, Peter Grünberg, Claus M. Schneider (FZ Jülich)
- Ronald Lehndorff (now Sensitec Mainz Germany)
- Volker Sluka, Alina Deac (now Helmholtz-Zentrum Rossendorf)
- Zbigniew Celinski (Colorado Springs, USA)
- Sebastian Gliga, Attila Kákay (FZ Jülich)
- Riccardo Hertel (now CNRS Strasbourg, France)
- Claire Besson, Paul Kögerler (RWTH Aachen and FZ Jülich)
- Nicolae Atodiresei, Vasile Caciuc, Stefan Blügel (FZ Jülich)