

The 6th IEEE Magnetics Society Summer School

JUNE 9-14, 2013

ASSISI, ITALY

Spintronics

Daniel E. Bürgler

Peter Grünberg Institute, Electronic Properties (PGI-6) and Jülich-Aachen Research Alliance (JARA-FIT) Forschungszentrum Jülich, Germany

Assisi

June 11, 2013

Introduction

Interlayer exchange coupling

Giant and tunneling magnetoresistance

Current-induced magnetization dynamics

Pure spin current

Magnetic molecules (Time permitting)

Conclusions

Conduction electrons in a solid

Conduction electrons move with Fermi velocity ($v_F \approx 10^6$ m/s) and undergo random scattering from defects, phonons, electrons Relaxation time $\tau \approx 10^{-14} - 10^{-15}$ s \Rightarrow Mean free path $\lambda = v_F \tau \approx 1 - 10$ nm

 $\Rightarrow Conduction electrons experience the environment on a length scale given by the mean free path \lambda$

JARA FIT

Drift velocity

An electric field *E* superimposes a much lower drift velocity $(v_D \approx 10^3 \text{--} 10^4 \text{ m/s})$ in the direction of the electric field:

 $\Rightarrow E\text{-field induces net transport of electrons,$ *i.e.* $electrical current}$ $\Rightarrow Diffusive transport for d >> \lambda or ballistic transport for d < \lambda$

Electrons in a multilayer

Consider multilayer with layer thicknesses less than λ .

⇒ Conduction electrons experience both magnetic layer
⇒ Static spin-transfer processes

Spin-transfer processes

Spin-flip scattering is less probable than momentum scattering Spin-flip length exceeds to mean free path *L*

 $\Rightarrow E$ -field gives rise to net charge and/or spin currents $\Rightarrow Dynamic spin-transfer processes$

 Spintronics (magnetoelectronics) comprises all spin-dependent electronic transport phenomena.
 Novel fundamental physics

 Spintronics make use of the spin degree of freedom of the electron in addition to (or instead of) its charge.
 ⇒ Spin transport *versus* charge transport

• Spintronics is a new paradigm of electronics based on the spin degree of freedom of the electron.

 \Rightarrow Novel prospects for applications in information technology

Spin-resolved density of states (SDOS)

Electrical transport is due to charge carriers close to the Fermi edge $E_{\rm F}$ ($\Delta E \approx kT$)

Unequal DOS for spin-up and spin-down in ferromagnets lead to a polarization of the current

IMPORTANT: Distinguish

1) Total occupation number for the two spin orientations: N_{\uparrow} and N_{\downarrow} \Rightarrow Majority and minority spins; magnetization $M \propto (N_{\uparrow} - N_{\downarrow})$

2) Density of states at the Fermi edge E_{F} : $N_{\uparrow}(E_{\text{F}})$ and $N_{\downarrow}(E_{\text{F}})$ \Rightarrow Polarization *P* at E_{F}

Spin polarization

An imbalance of spin-up and spin-down electrons (*e.g.* in a ferromagnet) can give rise to a spin-polarized current \Rightarrow Spin-transport.

The spin polarization $P_{current}$ of a current is defined as

$$P_{current} = \frac{J^{\uparrow} - J^{\downarrow}}{J^{\uparrow} + J^{\downarrow}} \quad ; \quad \left| P_{current} \right| \le 1 \quad ; \quad J^{\uparrow,\downarrow}: \text{ current densities}$$

However, $J^{\uparrow,\downarrow}$ cannot be measured directly.

⇒ Various, system and experiment dependent "definitions" of spin polarization are used instead

Various definitions of spin polarization

$$P_{current} = \frac{J^{\uparrow} - J^{\downarrow}}{J^{\uparrow} + J^{\downarrow}} \quad ; \quad \left| P_{current} \right| \le 1 \quad ; \quad J^{\uparrow,\downarrow}: \text{ current densities}$$

Popular, but only for ground state valid definition (no current) :

 $P = \frac{N^{\uparrow}(E_F) - N^{\downarrow}(E_F)}{N^{\uparrow}(E_F) + N^{\downarrow}(E_F)} \quad ; \quad |P| \le 1 \quad ; \quad N^{\uparrow,\downarrow}(E_F): \text{SDOS at Fermi edge}$ Ballistic transport: $J \propto \langle Nv \rangle \Rightarrow P_{Nv} = \frac{\langle Nv \rangle^{\uparrow} - \langle Nv \rangle^{\downarrow}}{\langle Nv \rangle^{\uparrow} + \langle Nv \rangle^{\downarrow}}$ Diffusive transport: $J \propto \langle Nv^2 \rangle \Rightarrow P_{Nv^2} = \frac{\langle Nv^2 \rangle^{\dagger} - \langle Nv^2 \rangle^{\downarrow}}{\langle Nv^2 \rangle^{\dagger} + \langle Nv^2 \rangle^{\downarrow}}$

 $v^{\uparrow,\downarrow}$: velocity ; $\langle ... \rangle^{\uparrow,\downarrow}$ integral over Fermi surface of up or down states \Rightarrow Spin polarization is NOT a uniquely defined quantity I.I. Mazin, Phys. Rev. Lett. 83, 1427 (1999)

In contrast to the charge the spin of an electron is not conserved.

Electrons in a solid undergo random scattering. Most scattering event are spin-conserving but change the momentum \Rightarrow momentum scattering, relaxation time τ

Some (1 in $N \approx 10^3$) scattering events transfer angular momentum (e.g. to the lattice by spin-orbit coupling) and flip the spin \Rightarrow spin-flip scattering, relaxation time $\tau_{SF} >> \tau$

⇒ After $N = \tau_{SF} / \tau$ scattering events the spin-flip occurs. The characteristic length scale is the spin diffusion length λ_{SF} : $\lambda_{SF} = v_F \tau_{SF} \approx 1-10 \text{ nm for Py}$ 50 nm for Co 100 nm for Cu >10 µm for 2-DEG GaAs/GaAlAs or Si

IARA FIT

Spin diffusion length

Total path to spin-flip:

$$L_{\rm SF} = N \lambda = \lambda \tau_{\rm SF} / \tau$$

Spin diffusion length λ_{SF} in a random walk model:

$$\lambda_{\rm SF} = \sqrt{\frac{N}{3\lambda}} = \lambda \sqrt{\frac{\tau_{\rm SF}}{3\tau}}$$

⇒ The spin state of an electron in a solid relaxes within a spin diffusion length of typically few to several 100 nm (for metals)

 \Rightarrow Need for nanostructures

 \Rightarrow Spintronics is a nanotechnology

An imprinted (injected) spin polarization P decays due to spin-flip processes to the equilibrium polarization P_0 :

 $P(x) = P_0 + (P - P_0) \exp(-x/\lambda_{\rm SF})$

Consider a ferromagnet with $P_0 \neq 0$. The unequal density of final states for the two spin directions yields asymmetric spin-flip scattering probabilities. Simple model:

$$\lambda_{\rm SF}(P_0) = \lambda_{\rm SF} / (1 - P_0^2)^{1/2} \qquad \Rightarrow \qquad P = \pm 1: \lambda_{\rm SF}(P_0) = \infty$$

All electrons are majority electrons. Spin-flip is forbidden because there are no minority states at near the Fermi level.

IARA|F||

⇒ Strongly polarized materials show less spin relaxation
 ⇒ Intense search for ferromagnetic half-metals

Overview

Introduction

Interlayer exchange coupling

Giant and tunneling magnetoresistance

Current-induced magnetization dynamics

Pure spin current

Magnetic molecules

Conclusions

Once upon a time, ...

Once upon a time, in the early 1980's ...

Peter Grünberg

Phenomenology of Magnetic Interlayer Coupling

Consider two ferromagnetic layers separated by a thin spacer layer: Ferromagnet / Non-Ferromagnet / Ferromagnet

The ferromagnetic layers interact across the spacer and align ...

... parallel ...

"ferromagnetic

coupling"

JARA FIT

... antiparallel ...

"antiferromagnetic

coupling"

... at 90°...

"biquadratic or

90°-coupling"

Outline: Interlayer exchange coupling

- Phenomenology of interlayer coupling
- Measurement by MOKE
- Physical picture for oscillatory bilinear coupling
- Biquadratic coupling
- Example: Morphology and "Fermiology"
- Applications
- Conclusions

Phenomenological description

Contribution of IEC to the areal free energy density :

$$E = -J_1 \cos(\Delta \Theta) - J_2 \cos^2(\Delta \Theta)$$

"bilinear" "biquadratic"

 $\Delta \theta$ is the angle between the magnetizations of the two coupled layers.

 J_1 and J_2 are parameters describing the coupling: $J_1 > 0$: FM coupling $J_1 < 0$: AF coupling J_2 dominant and $J_2 < 0$: 90° coupling

Note: $J_1(D)$ oscillates as a function of the spacer thickness D

Oscillatory interlayer exchange coupling

- only occurs for thin spacers with a thickness of a few nm
 is observed for many metallic spacer layers (see [1] for a "periodic table of interlayer coupling")
- \bullet oscillates as a function of the spacer thickness D

Scanning electron microscopy with spin analysis (SEMPA) [2]:

3) Domain picture of Fe layer grown on Cr wedge

2) Wedge-shaped Cr spacer

1) Domain picture of Fe single crystal (whisker) with two domains

[1] S.S.P. Parkin, Phys. Rev. Lett. 67, 3958 (1991)
[2] D.T. Pierce *et al.*, Phys. Rev. B 49, 14564 (1994)

Outline: Interlayer exchange coupling

- Phenomenology of interlayer coupling
- Measurement by MOKE
- Physical picture for oscillatory bilinear coupling
- Biquadratic coupling
- Example: Morphology and "Fermiology"
- Applications
- Conclusions

MOKE setup

The magneto-optical Kerr effect is a simple means to measure hysteresis loops of thin films and multilayers. Any other method (*e.g.* SQUID, VSM, etc.) yielding hysteresis loops or sensitive to a local effective field (FMR, BLS) can be used to determine interlayer coupling.

Typical hysteresis loops for different types of interlayer coupling

The saturation and switching fields are approximate measures for the coupling strength

BUT: A quantitative determination of the coupling needs fitting.

Phenomenological ansatz for a coupled trilayer

$E(\Theta_1,\Theta_2) =$	Free energy per area =
$-HM_{S}[d_{1}\cos(\Theta_{1})+d_{2}\cos(\Theta_{2})]$	Zeemann energy
+ $\frac{1}{4} [K_1 d_1 \sin^2(2\Theta_1) + K_2 d_2 \sin^2(2\Theta_2)]$	+ in-plane anisotropy
$-J_1\cos(\Theta_1-\Theta_2)$	+ bilinear coupling
$-J_2\cos^2(\Theta_1-\Theta_2)$	+ biquadratic coupling

Fitting procedure: Determine for each field *H* the magnetization alignment

 (θ_1, θ_2) that minimizes the free energy *E*. Examples for Fe/Cr/Fe(001):

JARA FIT

Typical bilinear coupling strengths

Sample	Maximum strength $-J_1$ in mJ/m ²	Periods in ML and (nm)
	(at spacer thickmann in nm)	
Co/Cu/Co (100)	0.4 (1.2)	2.6 (0.47); 8 (1.45)
Co/Cu/Co (110)	0.7 (0.85)	9.8 (1.25)
Co/Cu/Co (111)	1.1 (0.85)	5.5 (1.15)
Fe/Au/Fe (100)	0.85 (0.82)	2.5 (0.51); 8.6 (1.75)
Fe/Cr/Fe (100)	> 1.5 (1.3)	2.1 (0.3); 12 (1.73)
Fe/Mn/Fe (100)	0.14 (1.32)	2 (0.33)
Co/Ru/Co (0001)	6 (0.6)	5.1 (1.1)
Co/Rh/Co (111)	34 (0.48)	2.7 (0.6)
Fe/Si/Fe (100)	6-8	

Experimental values are often much smaller than theoretically predicted due to roughness, interdiffusion, etc.

Direct exchange in Fe:
$$J \approx \frac{k_B T_C}{a^2} = 170 \frac{\text{mJ}}{\text{m}^2}$$
; $T_C = 1040 \text{ K}, a = 2.9 \text{ Å}$

JARA FIT

Outline: Interlayer exchange coupling

- Phenomenology of interlayer coupling
- Measurement by MOKE
- Physical picture for oscillatory bilinear coupling
- Biquadratic coupling
- Example: Morphology and "Fermiology"
- Applications
- Conclusions

Origin of bilinear coupling

Distinguish antiferromagnetic and paramagnetic/diamagnetic spacers:

Direct exchange from layer to layer gives rise to oscillations with a period of two monolayers. Possible example: Cr(001) spacers ?

IARA

New explanation needed for diamagnetic/paramagnetic spacers without intrinsic magnetic order:

Conduction electrons in the spacer mediate the coupling!

First simple explanation: RKKY-oscillations

Ruderman, Kittel, Kasuya, and Yoshida considered in the 1950's magnetic impurities in a non-magnetic metal host :

RKKY-model

The interaction of two magnetic impurities is oscillating with their separation r and decays with r^3 :

RKKY-model

Extension to two layers of "magnetic impurities": The interaction oscillates with with the layer separation z and decays with z^2 :

Periodicity of J(z):

$$Q = 2k_F$$

 \Rightarrow Simple and intuitive, but not simply applicable to real spacer materials

Quantum interference model for bilinear coupling

Consider spin-dependent quantum well states (QWS) due to spindependent reflectivities at the interfaces between spacer and FM layers.

JARA|F||

For a certain spacer thickness *D* there is a series of QWS fulfilling the condition:

$$D = n \frac{\lambda}{2} \quad ; \quad n = 1, 2, 3, \dots \qquad \lambda = \frac{2\pi}{k_{\perp}}$$
$$\Rightarrow k_{\perp}^{(n)} = n \frac{\pi}{D} \quad ; \quad n = 1, 2, 3, \dots$$
$$\Rightarrow \text{Period } \Delta D = \frac{\lambda}{2} = \frac{2\pi}{2k_{\perp}} \text{ for given } k_{\perp}$$

P. Bruno, Phys. Rev. B 52, 411 (1995)

What is the origin of spin-dependent reflectivity?

Spin-dependent reflectivity arises from the "potential landscape" seen by the electrons due to the layered structure. The two spin channels experience different potential steps at the interfaces between the spacer and the FM layers.

Example Co / Cu / Co:

Similar band structure (low potential steps and low reflectivity) for majority electrons and shifted band structure (high potential step and high reflectivity) for minority electrons:

Spin-dependent "Spaghetti diagrams" of Co and Cu

Example Co / Cu / Co: Similar band structure for Cu and majority electrons; shifted band structure for minority electrons:

Interlayer exchange coupling

Consider static case without external *E*-field
 Assume spin-dependent interface reflection
 Parallel alignment: Antiparallel alignment:

⇒ Formation of spin-dependent quantum well states (QWS) for parallel, but not for antiparallel alignment of the FM layers

Quantum well states

Energy of QWS related to k_{\perp} is quantized. Energy levels shift when the spacer thickness *D* is varied.

 \Rightarrow Interlayer exchange coupling oscillates

as a function of the spacer thickness D

Example: Cu/Co(100)

Angle-resolved photoemission: The QWS shift up in energy with increasing D:

 $E \approx -k_{QWS}^{2}$

at upper band edge.

The QWS cross the $E_{\rm F}$ at regular interval of 5-6 atomic layer, exactly corresponding to the oscillation period of J(D).

Spin-resolved spectra indicate that the QWS are mainly of minority (spin-down) character:

×'a

k_{QWS}

 $E_{\mathbf{F}}$

Aliasing (or backfolding into the first Brillouin zone)

Typical ΔD are of the order of a few Å, *i.e.* interatomic distances

JARA|F||

Which k_{\perp} are important?

J(D) is dominated by k_{\perp} with the highest density of states at $E_{\rm F}$. \Rightarrow Consider k_{\perp} at stationary point

fcc(001) Fermi surface of a noble metal, *e.g.* Au(001)

IARA||||

 $k_{osc} = |2k_{\perp} - k_{p}|$ Several stationary points may exist $\Rightarrow J(D)$ is a superposition of oscillations *e.g.* 2.5 and 8 ML for Au(001)

Real Fermi surfaces are non-spherical

 \Rightarrow Oscillations depend on growth

direction

P. Bruno et al., Phys. Rev. Lett. 67, 1602(1991)

Example Fe / Au / Fe(001)

A. Fuss et al., J. Magn. Magn. Mater. 103, L221 (1992); P. Bruno, Phys. Rev. B 52, 411 (1995)

JARA|F||

Outline: Interlayer exchange coupling

- Phenomenology of interlayer coupling
- Measurement by MOKE
- Physical picture for oscillatory bilinear coupling
- Biquadratic coupling
- Example: Morphology and "Fermiology"
- Applications
- Conclusions

Biquadratic or 90°-coupling

Biquadratic coupling is less well understood than bilinear coupling. Intrinsic higher-order contributions are expected to be small.

Most models relate biquadratic coupling to extrinsic effects like:

- Interface roughness:

Fluctuation mechanism

Magnetic dipole mechanism

- Pinholes in the spacer
- Chemical intermixing
 - "Loose-spin" mechanism

Fluctuation mechanism

For a oscillation period of 2 ML J_1 locally changes sign at each step edge!

Examples for short oscillations:

- 2.5 ML for Au(100)
- 2.6 ML for Cu(100)
- 2 ML for Cr(100)
- 2 ML for Mn(100)

Competition between local fluctuations of the bilinear coupling due to spacer thickness fluctuations

and

direct exchange within the FM layers

on a lateral length scale shorter than the FM domain wall width.

Interface roughness can give rise to interlayer coupling of different types

depending on the vertical correlation of the roughness

⇒ Ferromagnetic "orange-peel" coupling for correlated roughness

Interface roughness can give rise to interlayer coupling of different types depending on the vertical correlation of the roughness

⇒ Antiferromagnetic "Néel" coupling for anti-correlated roughness

Interface roughness can give rise to interlayer coupling of different types

depending on the vertical correlation of the roughness

 \Rightarrow 90°-coupling for uncorrelated (random) roughness

Outline: Interlayer exchange coupling

- Phenomenology of interlayer coupling
- Measurement by MOKE
- Physical picture for oscillatory bilinear coupling
- Biquadratic coupling
- Example: Morphology and "Fermiology"
- Applications
- Conclusions

Influence of interface roughness

Epitaxial Fe/Cr-wedge/Fe(001) grown at different substrate temperatures RT MT_{570} MT520 STM images: 400 nm x 400nm 100 nm x 40 nm 20 nm b | 0 c | 0 Coupling versus х 5 (mJ/m²) (mJ/m²) spacer thickness -0.1 (MOKE) MT570 MT 520 RΤ C.M. Schmidt, D.E. Bürgler et al., 25 30 25 25 30 10 20 0 20 0 10 15 20 15 10 15 Phys Rev. B 60, 4158 (1999) Spacer thickness (ML) Spacer thickness (ML) Spacer thickness (ML)

JARA FIT

Influence of Fermi surface

Fe / Cr / Fe compared with Fe / Cr / Au / Fe(001)

With additional Au layer:

JARA FIT

- coupling strength decreases
- short-period oscillations still visible
- long-period oscillation disappeared

D.E. Bürgler et al., Phys. Rev. B 60, R3732 (1999)

In-plane momentum conservation

 \Rightarrow States giving rise to short-period oscillation can propagate in Au

 \Rightarrow States giving rise to long-period oscillation cannot propagate in Au

⇒ States near the X point do not mediate the long-period oscillation D.E. Bürgler *et al.*, Phys. Rev. B **60**, R3732 (1999)

JARA|FIT

Outline: Interlayer exchange coupling

- Phenomenology of interlayer coupling
- Measurement by MOKE
- Physical picture for oscillatory bilinear coupling
- Biquadratic coupling
- Example: Morphology and "Fermiology"
- Applications
- Conclusions

Application: Reference layers in GMR/TMR-sensors

Application: AFC media for harddisk drives (I)

Application of AF coupling in the disk media in order to push the superparamagnetic limit:

• Condition to increase storage density:

Reduce magnetization density *M* t

• Condition to for long-time stability (10 years), *i.e.* to withstand superparamagnetism:

Keep anisotropy energy large enough: $K_{\rm U}V > 40 k_{\rm B}T$

• Condition given by max. field of write-heads:

Keep writing field low enough: $H_{write} \approx K_U/M$

Condition for sufficient signal-to-noise ratio:

IARA FIT

Reduce V in order to keep number of grains per bit constant. E.E. Fullerton *et al.*, Appl. Phys. Lett. **77**, 3806 (2000)

Application: AFC media for harddisk drives (II)

Idea: Use antiferromagnetically coupled trilayer with different FM layer thicknesses $t_1 < t_2$:

 \Rightarrow Reduced effective magnetization density: $M t = M (t_2 - t_1)$

- \Rightarrow Anisotropy energy not reduced: $K_U V = K_U (V_1 + V_2) \propto t_1 + t_2$
- \Rightarrow Slightly increased writing field: $H_{write} \approx H_c^{(1)} + H_{ex}$

⇒ Grain volume V can be decreased E.E. Fullerton *et al.*, Appl. Phys. Lett. **77**, 3806 (2000)

JARA|FIT

- Bilinear magnetic interlayer exchange coupling across metallic spacer layers is well understood
- The quantum interference model predicts the oscillation periods with high precision
- Biquadratic coupling is due to extrinsic effects and, therefore, less well understood
- Interlayer exchange coupling has entered applications in sensors and harddisk drives
 - Interlayer coupling paved the way for the discovery of the giant magnetoresistance effect (GMR)

For a review see: D.E. Bürgler *et al.*, in "Handbook of Magnetic Materials", Vol. 13, ed. by K.H.J. Buschow (Elsevier, 2001).

Overview

Introduction

Interlayer exchange coupling

Giant and tunneling magnetoresistance

Current-induced magnetization dynamics

Pure spin current

Magnetic molecules

Conclusions

Outline: Giant and tunneling magnetoresistance (GMR and TMR)

- Phenomenology of GMR
- Intermezzo: Ferromagnetic halfmetals
- Physical picture for GMR
- Applications of GMR
- Phenomenology of TMR
- Physical picture for TMR: Jullière and beyond
- Applications of TMR

Consider two ferromagnetic layers separated by a thin spacer layer: Ferromagnet / Non-Ferromagnet / Ferromagnet The ferromagnetic layers interact across the spacer and align ...

... parallel ... "ferromagnetic coupling"

... antiparallel ... 'antiferromagnetic coupling"

... at 90°... "biquadratic or 90°-coupling"

P. Grünberg et al., Phys. Rev. Lett. 57, 2442 (1986); M. Rührig et al., phys. stat. sol. (a) 125, 635 (1991)

Control of magnetization alignment

Antiferromagnetic IEC provides a means to reversibly switch between antiparallel and parallel alignment by applying an external

1988: ... simultaneously, but independent ...

"Does the electrical resistance depend on the magnetization alignment?"

RAP

Albert Fert

JARA FIT

Peter Grünberg

Giant magnetoresistance (GMR)

The electrical resistance depends on the relative magnetic alignment of the ferromagnetic layers

$$GMR = \frac{R_{AP} - R_P}{R_P}$$

19% for trilayers @RT80% for multilayers @ RT

GMR is much larger than the anisotropic magnetoresistance (AMR)

First observations of GMR

JARA|FIT

Normal magnetoresistance (MR):

In any metal the Lorentz force due to an applied field acts on the moving electrons and reduces the mean free path ⇒ Resistance increases with field (positive MR)

Spin disorder resistivity and negative MR:

In a ferromagnet spin disorder provides further scattering channels, *e.g.* stronger spin mixing Especially relevant around T_c \Rightarrow Resistance decreases with field (negative MR)

Both effects are rather small and isotropic, *i.e.* they do not depend on the direction of the field with respect to the sample orientation

Discovered 1857 by Lord Kelvin Describes the dependence of the resistance for a current flowing parallel (ρ_{\parallel}) or perpendicular (ρ_{\perp}) to the sample magnetization \Rightarrow Anisotropic with respect to the sample orientation

$$AMR = \frac{\rho_{\parallel} - \rho_{\perp}}{\rho_{\parallel}}$$

For a thin film with in-plane magnetization $(\theta \text{ angle between magnetization and current}):$

$$\rho(\theta) = \frac{\rho_{\parallel} + \rho_{\perp}}{2} + (\rho_{\parallel} - \rho_{\perp})(\cos^2 \theta - \frac{1}{2})$$

 $\Rightarrow \pi$ -periodic

AMR originates from spin-orbit coupling and is 3% at most (Py)

Representative GMR ratios

Sample	$\Delta R = R_P(\%)$	Te mperatur e (K)
Fe(4.5)/Cr(12) 50	220	1.5
	42	300
Co(10)/Cu(10) 100	80	300
Co(30)/Cu(19)/Co(25)	19	300
$Co_{90}Fe_{10}(40)/Cu(25)/Co_{90}Fe_{10}(8)$	7	300
NiFe(100)/Cu(25)/Co(22)	4.6	300
\dots CoFe/AgCu(15)/CoFe	4—7	300
Co(15)/Cu(12) n CPP	170	4.2
Co(12)/Cu(11) ₁₈₀ CPP	55	300

Geometry is CIP unless specially marked with CPP. Auxiliary layers which are not directly active in the GMR effect are mostly omitted. Numbers in brackets indicate the layer thicknesses in Å.

After P. Grünberg, Sensors and Actuators A 91, 153 (2001)

Representative GMR ratios

Sample		$\Delta R = R_P(\%)$	Te mperatur e (K)
Fe(4.5)/Cr(1	2) ₅₀	220	1.5
Г		42	<u> </u>
Co(10)/Cu(Recent progress wi	oys: 00	
Co(30)/Cu(1	$\frac{\text{GMR in Co_2MnS1/2}}{20\%} \text{ CMD } \oplus \text{ DT}$	100) 00	
$Co_{90}Fe_{10}(40)$	39% GNIR @ RI	K) 00	
NiFe(100)/C	Earmi level		00
CoFe/Ag(00	
Co(15)/Cu(Y. Sakuraba <i>et al.</i> , Phys. Rev. B 82 , 094444 (2010)		<mark>4 (2010) </mark> 4.2
Co(12)/Cu(300

Geometry is CIP unless specially marked with CPP. Auxiliary layers which are not directly active in the GMR effect are mostly omitted. Numbers in brackets indicate the layer thicknesses in Å.

After P. Grünberg, Sensors and Actuators A 91, 153 (2001)

Outline: Giant and tunneling magnetoresistance (GMR and TMR)

Phenomenology of GMR

- Intermezzo: Ferromagnetic halfmetals
- Physical picture for GMR
- Applications of GMR
- Phenomenology of TMR
- Physical picture for TMR: Jullière and beyond
- Applications of TMR

Not to be confused with: Semimetal (e.g. Graphite): Vanishing gap, thus between metal and semiconductor

Halfmetal: Gap at the Fermi level for one spin direction, but no gap for the other spin direction

 \Rightarrow Requires spin splitting

 \Rightarrow Ferromagnetic material with |P| = 100%

Materials:

Some oxides: CrO_2 with |P| > 95% form experiment at low T Fe₃O₄ due to hopping of only one spin species

and Heusler alloys

Intermezzo: Properties of ferromagnetic halfmetals

Only electrons of one spin species (spin-up) contribute to transport, i.e. 100% spin polarization of conduction electrons ⇒ Infinite spin-flip length for spin-up ⇒ Zero spin-flip length for spin-down

 \Rightarrow Ideal electrodes for GMR, TMR, spin-injection, ...

 \Rightarrow Ideal spin filter for current-induced magnetic switching

IARA

Intermezzo: Calculated spin-split DOS of NiMnSb

Density [states/Ry/cell/spin]

Experimental prove of half-metallicity is lacking for most predicted halfmetals. Problems: Stoichiometry

Chemical and structural disorder

Interface effects (surface states, bonding)

Interlayer coupling is no precondition for GMR.

The AP alignment can be achieved by other means, *e.g.* FM layers with different coercive fields $H_c^{(1)} < H_c^{(2)} \Rightarrow$ Pseudo spin-valve

Exchange bias effect acting at the interface between an antiferromagnet (AFM) and a FM layer \Rightarrow Spin-valve

Exchange bias acts on the adjacent FM layer like an additional field H_E and shifts its magnetization loop on the field axis.

GMR of a spin-valve

JARA|FIT

 $\begin{array}{c} 6 \text{ nm Ni}_{80}\text{Fe}_{20} \\ 2.2 \text{ nm Cu} \\ 4 \text{ nm Ni}_{80}\text{Fe}_{20} \\ 7 \text{ nm FeMn} \end{array}$

The steep slope at zero field makes spin-valves sensitive field sensors.

B. Dieny, J. Magn. Magn. Mater. 136, 335 (1994)

Spin-valves II

JARA|FIT

Outline: Giant and tunneling magnetoresistance (GMR and TMR)

- Phenomenology of GMR
- Intermezzo: Ferromagnetic halfmetals
- Physical picture for GMR
- Applications of GMR
- Phenomenology of TMR
- Physical picture for TMR: Jullière and beyond
- Applications of TMR

Microscopic picture of GMR: Spin-dependent scattering

1) Spin-dependent scattering: $r^{min} \neq r^{maj}$

2) Mott's two current model: independent current channels for spin-up and spin-down (no spin-flip scattering)

JARA|FIT

Microscopic picture of GMR: Scattering spin asymmetry

Normal and inverse GMR

Expressing the GMR ratio first by $r_{L,R}^{maj,min}$ and then $\beta_{L,R}$ one obtains: $\frac{R_{AP} - R_P}{R_P} = C\beta_L\beta_R$; C > 0 $r_L^{maj} + r_R^{maj}$ $r_L^{maj} + r_R^{maj}$

 $\Rightarrow \text{Normal GMR for} \quad \beta_L \beta_R > 0$ Inverse GMR for $\beta_L \beta_R < 0$

For symmetric systems $\beta_L = \beta_R$, and GMR is always normal

JARA|FIT

Normal and inverse GMR

Normal GMR: $\beta_{L,R} > 0$ or $\beta_{L,R} < 0$

Inverse GMR: $\beta_L > 0$ and $\beta_R < 0$ or *vice versa*

 $\beta_{\rm L} > 0$ and $\beta_{\rm R} < 0$

 $\beta_{\rm L} > 0$ and $\beta_{\rm R} > 0$

Relation to Slater-Pauling curve I

Relation to Slater-Pauling curve II

This rule holds for bulk scattering spin asymmetries in AB alloys as well as for interface scattering spin asymmetries at A/B interfaces

(*e.g.* β < 0 for CoCr bulk alloys and Co/Cr interfaces)

This rule is observed in many CIP and CPP experiments and confirms spin-dependent scattering as the predominant mechanism for GMR.

A. Barthélémy et al., Handbook of Magnetic Materials 12 (1999)

Outline: Giant and tunneling magnetoresistance (GMR and TMR)

- Phenomenology of GMR
- Intermezzo: Ferromagnetic halfmetals
- Physical picture for GMR
- Applications of GMR
- Phenomenology of TMR
- Physical picture for TMR: Jullière and beyond
- Applications of TMR

Application of GMR: Magnetic field sensor

JARA|FIT

Application of GMR: Read heads in hard-disk drives

Application of GMR in hard-disks

- Advantages of GMR-based read heads compared to AMR or inductive read heads:
- 1) Stronger MR signal
 - $\Rightarrow Better signal-to-noise \\\Rightarrow Smaller bits can be read$
- 2) GMR is an interface effect (AMR is a bulk effect):
 ⇒ Thinner MR elements
 - \Rightarrow Less demagnetization
 - \Rightarrow Less wide MR elements
 - \Rightarrow Higher sensitivity

IARA|FIT

Outline: Giant and tunneling magnetoresistance (GMR and TMR)

- Phenomenology of GMR
- Intermezzo: Ferromagnetic halfmetals
- Physical picture for GMR
- Applications of GMR
- Phenomenology of TMR
- Physical picture for TMR: Jullière and beyond
- Applications of TMR

Tunneling magnetoresistance (TMR)

The electrical resistance depends on the relative magnetic alignment of the ferromagnetic layers

Only for current perpendicular to the sample plane \Rightarrow Tunneling current

Typical areal resistance: $RA \approx 1 - 10^6 \Omega \ \mu m^2$

 $TMR = \frac{R_{AP} - R_{P}}{R_{P}}$

60% for AlO_x barriers @RT >600% for epitaxial MgO @ RT

Typical TMR structure and measurement

Intermezzo: Optical lithography of TMR junctions

Outline: Giant and tunneling magnetoresistance (GMR and TMR)

- Phenomenology of GMR
- Intermezzo: Ferromagnetic halfmetals
- Physical picture for GMR
- Applications of GMR
- Phenomenology of TMR
- Physical picture for TMR: Jullière and beyond
- Applications of TMR

Microscopic picture of TMR: Spin-dependent tunneling

TMR exploits spin-dependent tunneling probabilities across an insulating rather than spin-dependent scattering probabilities Assumptions: Spin and energy conservation during tunneling

 \Rightarrow TMR depends on the spin-split DOS at the Fermi level $N_{L,R}^{\uparrow,\downarrow}$

Jullière's model

$$R_{P} = \frac{V}{I_{P}} \propto \frac{V}{N_{L}^{\uparrow} N_{R}^{\uparrow} + N_{L}^{\downarrow} N_{R}^{\downarrow}} \qquad \qquad R_{AP} = \frac{V}{I_{AP}} \propto \frac{V}{N_{L}^{\uparrow} N_{R}^{\downarrow} + N_{L}^{\downarrow} N_{R}^{\uparrow}}$$

Consider the polarization at the Fermi level: $P_{L,R} = \frac{N_{L,R}^{\uparrow} - N_{L,R}^{\downarrow}}{N_{L,R}^{\uparrow} + N_{L,R}^{\downarrow}}$

M. Jullière, Phys. Lett. 54A, 225 (1975)

$$\Rightarrow \text{TMR} = \frac{R_{AP} - R_P}{R_P} = \frac{2P_L P_R}{1 - P_L P_R} \qquad \text{Jullière formula}$$

 $[P_L P_R > 0: \text{ normal and } P_L P_R < 0: \text{ inverse TMR effect}]$

 BUT: What are the relevant polarizations P_i? Bulk? Interface? Are interface states important? What is the role of barrier material?

Beyond Jullière's model: Importance of barrier material

The strength and sign of TMR depend on the barrier material P_L and P_R are related to the bonding details at the interface J.M. de Teresa *et al.*, Science **286**, 507 (1999)

IARA FII

Beyond Jullière's model: Epitaxial MgO barriers

Epitaxial [1] or highly oriented [2] MgO(001) barriers yield very high TMR ratios of up to 220% at RT.

[1] S. Yuasa et al., Nature Materials 3, 868 (2004), [2] S.S.P. Parkin et al., Nature Materials 3, 862 (2004)

JARA FIT

Beyond Jullière's model: Epitaxial MgO barriers

The high TMR is due to predominant and coherent tunneling of highly symmetric Fe Δ_1 majority states. W.H. Butler et al., Phys. Rev. B 63, 054416 (2001)

JARA FIT

"History" of TMR

There is always more to come...

1975 First observation of TMR in Fe/Ge/Co by Jullière 14% but only at low temperature

1995 Rediscovery of TMR by Miyasaki and Moodera up to the "theoretical Jullière limit" for 3d ferromagnets and AlO_x barriers of about 60% at RT in the following years

2004 Epitaxial structures with MgO barriers yield TMR ratios of up to 600% at RT

Outline: Giant and tunneling magnetoresistance (GMR and TMR)

- Phenomenology of GMR
- Intermezzo: Ferromagnetic halfmetals
- Physical picture for GMR
- Applications of GMR
- Phenomenology of TMR
- Physical picture for TMR: Jullière and beyond
- Applications of TMR

Non-volatile, highly integrated solid-state device

Each TMR element represents one bit

FORSCHUNGSZENTRUM

Non-volatile, highly integrated solid-state device

Each TMR element represents one bit

FORSCHUNGSZENTRUM

Advanced switching concept

Advanced switching concept

Apply Newton's third law "*Actio = Reactio*" to GMR/TMR: "The electric current flow controls the magnetization state"

Negative current

Positive current \Rightarrow parallel alignment \Rightarrow Antiparallel alignment

 \Rightarrow Current-induced magnetization switching by spin-transfer torque

J.C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996); L. Berger, Phys. Rev B 54, 9353 (1996)

Magnetic random access memory (MRAM)

Overview

Introduction

Interlayer exchange coupling

Giant and tunneling magnetoresistance

Current-induced magnetization dynamics

Pure spin current

Magnetic molecules

Conclusions

Outline: Current-induced magnetization dynamics

- Need for advanced magnetic switching concept
- Phenomenology of spin-transfer torque (STT)
 - "Current-induced magnetization switching"
- Physical picture for STT
- Current-driven magnetization dynamics
 - "Extended Landau-Lifshitz-Gilbert equation"
 - "Spin-torque oscillators (STO)"
- STT in non-uniform magnetization structures

Advanced switching concept for spintronic devices

Spintronic devices employ the electron spin for data storage and processing.

Manipulation of the magnetic state of ferromagnetic nano-scale objects, *e.g.* electrodes, is of crucial importance.

Conventional field-induced magnetization switching

Consider a constant magnetization M within a certain volume. The effective field B_{eff} gives rise to the energy density E and a torque Γ :

Conventional switching by applying an antiparallel field depends on perturbations (temperature, edges, magnetic inhomogeneities) ⇒ Slow, energetically inefficient, spatially incoherent

Conventional switching of a thin Ni nanowire

Ni wire, 40 nm diameter, 1 μ m length, $\alpha = 0.1$ H = 200 mT. $t = 0 \dots 4.5$ ns $< m_x >$ <m_v> <m_> 0.5 < m > H_{ext} -0.5 9 2 8 10 3 5 7 0 time [ns] Nucleation, propagation, precession, ringing

 \Rightarrow slow, inefficient, incoherent

R. Hertel, J. Magn. Magn. Mater. 249, 251 (2002).

Requirements for magnetization switching

- Local addressing and selection of single nano-scale objects
 ⇒ avoid external magnetic fields
 ⇒ switching by electrical means (gate voltage or current)
- Low dissipation to reduce power consumption and heat load
 ⇒ efficient mechanism
- Potential for down-scaling and semiconductor compatibility => solid-state environment
- Fast switching below 1 ns to keep up with increasing clock speeds
 ⇒ magnetization dynamics plays a role

⇒ Spin-transfer torque dynamics provides a route to advanced magnetization switching concepts

IARA FIT

Field-induced versus current-induced writing of MRAM cells

JARA FIT

Outline: Current-induced magnetization dynamics

- Need for advanced magnetic switching concept
- Phenomenology of spin-transfer torque (STT)
 - "Current-induced magnetization switching"
- Physical picture for STT
- Current-driven magnetization dynamics
 - "Extended Landau-Lifshitz-Gilbert equation"
 - "Spin-torque oscillators (STO)"
- STT in non-uniform magnetization structures

High current densities: >10⁷ A/cm² or several mA per $(100 \text{ nm})^2$

J.C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996); L. Berger, Phys. Rev B 54, 9353 (1996)
E.B. Myers *et al.*, Science 285, 867 (1999); J.A. Katine *et al.*, Phys. Rev. Lett. 84, 3149 (2000)

Pioneering work by the Cornell group

JARA FIT

Nanopillars for spin-transfer torque effects

SEM micrograph

R. Lehndorff, D.E. Bürgler *et al.*, Phys. Rev. B **76**, 214420 (2007); H. Dassow, D.E. Bürgler *et al.*, Appl. Phys. Lett. **89**, 222511 (2006)

Interplay between crystalline anisotropy and STT

 \Rightarrow Precise control of magnetization alignment by current

R. Lehndorff, D.E. Bürgler et al., Phys. Rev. B76, 214420 (2007)

JARA FIT

Switching by Oersted field of current?

The current ($\approx 10^7 \text{ A/cm}^2$) gives rise to a circular magnetic field, which favors a vortex-like magnetization state in the small magnetic elements.

BUT:

 The vortex state is symmetric with respect to the current polarity
 The maximum Oersted field at the edge scales like αI/d
 The spin-torque transfer (STT) scales like βI/d² (current I, contact diameter d)

STT exceeds Oersted field ($\beta I/d^2 > \alpha I/d$) for d below 1 μ m

Contact diameters of several 100 nm are needed to overcome Oersted fields ... provide sufficient current densities for several mA ... are feasible with electron-beam lithography

Switching by Oersted field of current?

The current ($\approx 10^7 \text{ A/cm}^2$) gives rise to a circular magnetic field, which favors a <u>vortex-like magnetization state in the small magnetic clements</u>.

Outline: Current-induced magnetization dynamics

- Need for advanced magnetic switching concept
- Phenomenology of spin-transfer torque (STT)
 - "Current-induced magnetization switching"
- Physical picture for STT
- Current-driven magnetization dynamics
 - "Extended Landau-Lifshitz-Gilbert equation"
 - "Spin-torque oscillators (STO)"
- STT in non-uniform magnetization structures

Absorption of transversal spin component I

Consider a polarized current entering from a non-magnet into a ferromagnet. The spin-split DOS gives rise to spin-dependent transmission and reflection at the interface:

Transversal spin moment is absorbed and acts as a torque on the magnetization \Rightarrow Spin filtering

Spinors for ideal spin filtering, e.g. for a half-metallic erromagnet

M. Stiles and A. Zangwill, Phys. Rev B 66, 014407 (2002)

Absorption of transversal spin component I

Consider a polarized current entering from a non-magnet into a ferromagnet. The spin-split DOS gives rise to spin-dependent transmission and reflection at the interface:

electron flux

Transversal spin moment is absorbed and acts as a torque on the magnetization \Rightarrow Spin filtering

In realistic cases, spin filtering absorbs about 50% of the transversal

spin component. The other 50% are transmitted or reflected. M. Stiles and A. Zangwill, Phys. Rev B 66, 014407 (2002)

Absorption of transversal spin component II

Spin-up and spin-down waves of the transmitted electrons have in the ferromagnet different k vectors, k^{\uparrow} and k^{\downarrow} .

 \Rightarrow Each spin precesses in space and acquires a *k*-dependent phase ξ

Summing over all k, different ξ reduce the transversal spin component \Rightarrow Absorption of the transversal spin component due to spatial spin precession in the ferromagnet

M. Stiles and A. Zangwill, Phys. Rev B 66, 014407 (2002)

Absorption of transversal spin component III

Quantum-mechanically, a reflected or transmitted spin is rotated by some *k*-dependent angle

Summing over all *k*, different rotation angles reduce the transversal spin component

⇒ Absorption of the transversal spin component due to spin rotation of reflected and transmitted electrons

All three effects together

-(i) spin filtering, (ii) spin precession, and (iii) spin rotationcompletely absorb near the interface the transversal spin component of the incident current, which acts as a torque on the magnetization

M. Stiles and A. Zangwill, Phys. Rev B 66, 014407 (2002)

Physical picture

A second FM layer with tilted magnetization polarizes the incident current. One layer (M_{free}) is easier to switch than the other (M_{fixed}) :

 M_{free} rotates towards M_{fixed} \Rightarrow stabilization of parallel alignment

electron flux

 M_{free} rotates away from M_{fixed} \Rightarrow destabilization of antiparallel alignment

Note importance of reflected current and asymmetry of FM layers

X. Waintal et al., Phys. Rev. B 62, 12317 (2000)

Confirmation of picture: Dependence on spacer thickness

 $J_c^+ \propto \exp(2d_{Cu}/\lambda) \implies \lambda = 140 \pm 30 \text{ nm} (70 \pm 20 \text{ nm without factor } 2)$

Reflected electron must cross the spacer layer twice!

F.J. Albert et al., Phys. Rev. Lett. 89, 226802 (2002)

Confirmation of picture: Dependence on spacer thickness

Reflected electron must cross the spacer layer twice!

F.J. Albert et al., Phys. Rev. Lett. 89, 226802 (2002)

JARA FIT

Above consideration is correct for any spin-polarized current:

Ballistic current due to drift motion in an electric field
 Diffusive current due to spin accumulation δm_z

Spin accumulation δm_z decays due to spin-flip scatting over distances given by the spin scatting length λ

 \Rightarrow gradient in δm_z

⇒ diffusive spin-polarized current

Outline: Current-induced magnetization dynamics

- Need for advanced magnetic switching concept
- Phenomenology of spin-transfer torque (STT)
 - "Current-induced magnetization switching"
- Physical picture for STT
- Current-driven magnetization dynamics
 - "Extended Landau-Lifshitz-Gilbert equation"
 - "Spin-torque oscillators (STO)"
- STT in non-uniform magnetization structures

Landau-Lifshitz-Gilbert (LLG) equation

Landau-Lifshitz-Gilbert equation describes the motion of \vec{M} in \vec{H}_{eff} : $\frac{d\vec{M}}{dt} = -\frac{\gamma}{1+\alpha^2} \left[\vec{M} \times \vec{H}_{eff} \right] - \frac{\alpha\gamma}{M_s \left(1+\alpha^2\right)} \vec{M} \times \left[\vec{M} \times \vec{H}_{eff} \right]; \vec{H}_{eff} = -\frac{1}{\mu_0} \frac{\delta E_{tot}}{\delta \vec{M}}$

Precession around H_{eff} with Larmor frequency of typically several GHz (*e.g.* Fe, Co, Ni) $\Rightarrow \tau \approx 0.1$ ns

Damping towards H_{eff} with a typically time constant (for $\alpha = 0.001$) of several ns

 μ_0 : permeability of vacuum γ : gyromagnetic ratio *α*: phenomenological damping constant*M*: saturation magnetization

L. Landau and E. Lifshitz, Phys. Z. Sowjetunion 8, 153 (1935) T. L. Gilbert, PhD thesis (1956); T. L. Gilbert, IEEE Trans. Magn. 40, 3443 (2004)

dM,

Μ

Extended Landau-Lifshitz equation

The spin-transfer torque can be written as:

$$\frac{d\vec{M}_{\text{free}}}{dt} = \frac{I}{A} \cdot g(\theta) \cdot \vec{M}_{\text{free}} \times \left[\vec{m}_{\text{free}} \times \vec{m}_{\text{fixed}}\right] ; \quad \vec{m}_{\text{free,fixed}} = \frac{\vec{M}_{\text{free,fixed}}}{M_{\text{S}}}$$

 $g(\theta)$ is the material-dependent efficiency of the spin-transfer effects

J.C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996)

Compare to LLG damping term:

$$\frac{dM}{dt} = -\frac{\alpha\gamma}{M_{\rm S}\left(1+\alpha^2\right)} \vec{M} \times \left[\vec{M} \times \vec{H}_{\rm eff}\right]$$

JARA|FIT

Spin-transfer torque

Depending on the polarity of *I* and *sign(g)*, the spin-transfer torque increases or compensates the intrinsic damping.

Microwave oscillations driven by spin-polarized currents

Spin-transfer torque can excite oscillatory motions of M_{free} with frequencies of several GHz. \Rightarrow GHz voltage signal due to GMR

\Rightarrow dc currents in magnetic nanostructures give rise to microwave signals

Microwave oscillations driven by spin-polarized currents

Wiring diagram for HF measurements

Setup similar to Kiselev et al., Nature 425, 380 (2003)

First observation of current-driven magnetization dynamics

S.I. Kiselev et al., Nature 425, 380 (2003)

JARA|FIT

Current-driven magnetization dynamics: Macrospin model

Oscillatory motion of M_{free} and the *H-I* phase diagram can qualitatively be understood by applying the extended LLG to a macrospin:

S.I. Kiselev et al., Nature 425, 380 (2003)

FEM micromagnetic simulation

2 nm-thick Fe nanomagnet with \emptyset 150 nm 50 mT external field along Fe(110), $\alpha = 0.02$ 5x10⁷A/cm², 30% spin-polarization

⇒ Very inhomogeneous magnetization structures ⇒ Different from what we know from field-induced dynamics

R. Hertel et al., Forschungszentrum Jülich;

K.-J. Lee et al., Nature Materials 3, 877 (2004)

FEM micromagnetic simulation

Time evolution of spatially averaged magnetization components

 \Rightarrow Oscillations with strongly varying amplitude

FEM micromagnetic simulation

Fourier transform of spatially averaged components

 \Rightarrow Clearly visible peaks in Fourier spectrum

Spin-torque oscillator (STO)

due to spin-transfer torque

IARA FIT

Spin-torque oscillators (STO) as microwave sources:

- solid-state realization
- nano-scale
- tunable by field and current
- RT operation
- envisaged for applications in
- communication and quantum information technology

BUT: Output power needs to be significantly increased:

- Optimizing STOs properties
- Synchronization of many STOs

IDEA:

Create an array of coupled and thus coherently oscillating STNOs: N oscillators produce up to N^2 -fold output power due to coherency

Coupling via

- magnetic interaction (spin-waves) in common magnetic layer

S. Kaka *et al.*, Nature **437**, 389 (2005) F.B. Mancoff *et al.*, Nature **437**, 393 (2005)

- electric interaction (microwaves) in common electrodes

-J. Grollier et al., Phys. Rev. B 73, 060409 (2006)

Wiring diagram for injection locking

Phase-locking of gyrotropic motion to external HF signal

Vortex STNO phase-locks to the externally applied HF signal in a rather large frequency range of about 100 MHz

R. Lehndorff, D.E. Bürgler et al., Appl. Phys. Lett. 97, 142505 (2010)

JARA FIT

Frequency versus external HF amplitude

TMR-based spin-torque nano-oscillator

A.M. Deac et al., Nature Physics 4, 803 (2008)

TMR-based spin-torque nano-oscillator

A.M. Deac *et al.*, Nature Physics **4**, 803 (2008)

TMR-based spin-torque nano-oscillator

• Different peaks correspond to 1st and 2nd order of modes at the center and at the "tips" of the elliptical magnetic element

 Maximum output power: 0.48 μW
 (although a significant fraction is lost due to poor impedance matching)

A.M. Deac et al., Nature Physics 4, 803 (2008)

Outline: Current-induced magnetization dynamics

- Need for advanced magnetic switching concept
- Phenomenology of spin-transfer torque (STT)
 - "Current-induced magnetization switching"
- Physical picture for STT
- Current-driven magnetization dynamics
 - "Extended Landau-Lifshitz-Gilbert equation"
 - "Spin-torque oscillators (STO)"
- STT in non-uniform magnetization structures

Current-driven domain wall motion

Domain walls are intrinsically non-uniform magnetization structures

Current-driven domain wall motion

MFM observation of current-induced domain wall motion

Here, arrows indicate the technical current direction

Current pulses: $1.2 \times 10^8 \text{ A/cm}^2$, $0.5 \mu \text{s}$

A. Yamaguchi et al., Phys. Rev Lett. 92, 077205 (2004)

JARA|FIT

STT term in continuous limit

STT acting on a magnetization distribution $\vec{M}(\vec{x})$ due to a current given by the current density \vec{j} and polarization *P*:

$$\left(\frac{d\vec{M}}{dt}\right)_{\rm STT} = -(\vec{u}\cdot\nabla)\cdot\vec{M} + \frac{\beta}{M_{\rm S}}\left[\vec{M}\times(\vec{u}\cdot\nabla)\cdot\vec{M}\right] \; ; \; \vec{u} = -\frac{\mu_{\rm B}P}{eM_{\rm S}}\vec{j}$$

Slonczewski-like in-plane adiabatic field-like out-of-plane non-adiabatic

⇒ Non-adiabatic STT is required to explain experimental observation of current-induced domain wall motion

A. Thiaville et al., Europhys. Lett. 69, 990 (2005)

Current-driven domain wall motion: Racetrack memory

- powerful storage-class memory
- solid-state device
- cost and storage capacities rivaling that of HDDs
- but much improved performance and reliability

Current-driven vortex core switching

Simulation: Liu *et al.*, Appl. Phys. Lett. **91**, 112501 (2007) Experiment: K. Yamada *et al.*, Appl. Phys. Lett. **93**, 152502 (2008)

STT and GMR in metallic antiferromagnets

PHYSICAL REVIEW B 73, 214426 (2006)

Theory of spin torques and giant magnetoresistance in antiferromagnetic metals

A. S. Núñez,* R. A. Duine,[†] Paul Haney,[‡] and A. H. MacDonald[§]

Department of Physics, The University of Texas at Austin, 1 University Station C1600, Austin, Texas 78712-0264, USA (Received 26 April 2006; published 14 June 2006)

PRL 100, 226602 (2008)

PHYSICAL REVIEW LETTERS

week ending 6 JUNE 2008

Spin-Transfer Torques in Antiferromagnetic Metals from First Principles

Yuan Xu, Shuai Wang, and Ke Xia

State Key Laboratory for Surface Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, China (Received 15 August 2007; published 3 June 2008)

PHYSICAL REVIEW B 75, 174428 (2007)

Ab initio giant magnetoresistance and current-induced torques in Cr/Au/Cr multilayers

P. M. Haney,^{1,*} D. Waldron,^{2,†} R. A. Duine,^{3,‡} A. S. Núñez,^{4,§} H. Guo,^{2,∥} and A. H. MacDonald^{1,¶}

Conclusions on STT

STT is understood in terms of spin momentum transfer and angular momentum conservation

Current-induced STT enables a novel, highly non-linear magnetization dynamics

Current-induced magnetization switching and STOs are of high technological relevance

