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The micromagnetic approach

Main contributions to the free energy of a ferromagnet:

e exchange energy

e magnetostatic energy

« magnetocrystalline anisotropy energy

* interaction with external field
It is the competition between these energies that gives rise to magnetic domains and is eventually
responsible for the hysteresis and switching phenomena observed in particles, films, etc.
In micromagnetics, one is given the energy G of the ferromagnet, defined with respect to certain
configurational coordinates X (both G, and X will have to be defined in precise terms); then one
looks for the set of local minima, characterized by G, /0X = 0 and §°G,/90X* > 0, that represent
possible metastable states for the system.
The key complication is that Xis not just a number, but represents the full magnetization vector field
M(r) defined over the entire body volume.
Thus, energy minimization has to be carried out in the infinite-dimensional functional space of all
possible magnetization configurations (variational problem).
The equations that express the condition of energy minimum for a given magnetization
configuration are known as Brown’s equations.
This energy minimization program does not say anything about how the system will evolve if initially
it is not in equilibrium; the Landau-Lifshitz-Gilbert (LLG) equation provides a suitable dynamic
extension of micromagnetics for the description of out-of-equilibrium stuations.



Magnetization processes

Hysteresis loop corresponds to
evolution of magnetic domain
structure

1 mm



Magnetization processes

The hysteresis loop is characterized ~dM
by a fine irregular structure which L dt
reflects the fact that domain walls
proceed through an irregular
sequence of Barkhausen jumps
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Energy landscapes

(X)

_ hot in equilibrium

|
apply

field

v

(meta)stable micromagnetic configurations M(.)  y
>

The use of energy landscapes implies a separation of time
scales: the relaxation time after which the system reaches
equilibrium with respect to a particular value of Xis much
shorter than the time over which the system evolves from
one value of X to another

The number of stable magnetization configurations (local
energy minima) can be very large due to structural disorder

The state occupied by the system is history-dependent if
the temperature is low enough

remove
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History dependence: the initial
and final energy profiles are the
same but the state occupied by
the system is different
depending on past history.




Elementary volumes and spontaneous magnetization

In micromagnetics, the ferromagnetic body is treated as a

continuous medium with smooth magnetic properties. The ferromagnetic

smoothness comes from averaging over elementary volumes body M(r)

small enough with respect to the scale over which the elementary
magnetization varies significantly, but large enough with volume

respect to atomic distances.

The local magnetization vector M(r) describes the magnetic o sponta?eotqs

. : magnetization
state of the given elementary volume. We assume that its — 9
magnitude IM(r)I2 is not affected by external fields (exchange ‘M (I‘)\ = MS(T)

dominates with respect to thermal fluctuations).

The magnetic state of each elementary volume is thus defined by the vector:

constant unit modulus but variable orientation
The state of the body is described by the magnetization vector field m(.) defined for each point inside

the magnet. Although the magnetization magnitude is constant, its orientation can vary from point to
point. It is the spatial variation of this orientation that defines the magnetic state of the magnet.

X - m() GL<X>H/V<fEX+fAN+fM+...>dv



Exchange energy

Exchange energy is caused by the fact that whenever there is some
misalignment of neighboring magnetic moments, there is an energy

cost involved.
The conclusion is evident if we consider for instance the Heisenberg

Hamiltonian:

H = — J..S.-S.
Z v Body volume is V
<i,j>
If Si is not parallel to its neighbor S;, the scalar product decreases and
the energy ( under positive Jjj ) increases.

It is this non-uniformity energy that is usually meant when one speaks of exchange energy. in this
sense, we have exchange energy only when the gradient of m takes non-zero values. If the variation
from point to point is not too rapid, we can make a Taylor expansion of the exchange energy as a
function of the magnetization gradients, and keep the lowest order terms. The exact form of the
expansion will depend on the symmetry of the lattice hosting the magnetic moments. The leading term
in the energy density consistent with cubic symmetry is the following:

The parameter A is the exchange stiffness

— / A <|Vmg;|2 + | Vm,|” + |me|2) dV | constant. Its typical value is of the order
4 of 10-11 J/m.
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Magnetocrystalline anisotropy energy

easy axis S

symmetry is broken:
exchange is : * uniaxial anisotropy
isotropic * cubic anisotropy

v

Magnetocrystalline anisotropy energy depends on the relative orientation of the local magnetization
with respect to certain preferred directions. In a perfect single crystal these directions will be the same
everywhere inside the body. However, in a polycrystal they will vary from point to point. In all cases,
anisotropy energy has a purely local character.

this direction can be space-dependent

/
/ This is the energy expression for the particular case of
F,=- / Ki(m - eAN)2 dV uniaxial anisotropy. The parameter Ki is the anisotropy
1% constant.




Magnetostatic energy

Magnetostatic energy is potential energy of magnetic moments in the
magnetic field they themselves have created. Magnetostatics permits
one to compute this energy if the vector field m(.) is known:

Y, Equivalent expression is:

o Ve

=73 /HM'mdv F, =1 H,|" dV
4 2 all space

The magnetostatic field is solution of magnetostatic Maxwell’s equations with the usual interface
conditions at the surface of the body:

V-H =—-M,V-m, VxH, =0 inside the magnet

V-H,=0, VxH,=0 outside

The relation between Hy and m is not local because magnetic charges even far away from a certain
point may affect the value of the magnetostatic field at that point. Although the magnetostatic energy is
expressed as a volume integral, it is not true that it comes from local contributions as it is the case, for
example, for crystal anisotropy energy. It is only after defining the geometry of the problem and after
selecting a particular magnetization configuration m(.) for the entire magnet that it is possible to
calculate the total magnetostatic energy for the magnet.



Shape anisotropy

Magnetostatic energy takes a particularly simple form for uniformly
magnetized ellipsoidal bodies. This leads to the notion of
shape anisotropy.

Consider an ellipsoidal body with principal axes along x, y, z, and
corresponding demagnetizing coefficients Ny, Ny, N;.

Assume that the body is uniformly magnetized, with normalized
magnetization m. Then the magnetostatic energy is:

ellipsoidal

poM 32 V particle

2 2 2
B, == (Nmi, + Nym;, + N.m:)
When the body has spheroidal shape with symmetry axis along z (i.e., N, = N, = N,), apart from
inessential constant terms, the energy can be rewritten in a form identical to that for uniaxial

anisotropy:

M2V
F,, = const — MOTS(NL —N.) (m-e.)’

Shape-anisotropy energy is just magnetostatic energy in a particular case.



Micromagnetic free energy

exchange magnetocrystalline magnetostatic external field

energy anisotropy energy interaction
AN \ 1 V3

< X ] %
(A(Vm)2—K1 (m-e, ) — " H,, -m—,qusHa-m) dV

G, (m()H,.1) = [ ;

v

exchange stiffness constant ~ 10-1" J/m S (Vm)® = |Vme|* + |[Vmy|® + |Vm. |

* The vector m(r) represents the normalized magnetization, measured in units of the spontaneous
magnetization; it is characterized by unit magnitude everywhere:

M
2
m|” =1 m = M.— spontaneous magnetization

* The magnetostatic field Hwm is the solution of magnetostatic Maxwell equations under given m(.):
V-H =-M,V-m, VxH =0 inside the magnet
V-H, =0, VxH,6 =0 outside

* The energy G is not expressible in terms of a purely local energy density, because the

magnetostatic field is known only after the magnetization configuration is specified for the entire
body and magnetostatic Maxwell equations are solved.



Energy minimization

If the system energy is at a minimum when the magnetization is m(.), then, when m(.) is varied by the
small amount m(r) — m(r) + dm(r), the corresponding energy variation 4G, is such that §G, = 0

to the first order in 0m and G, > 0 to the second order in dm for every arbitrary variation om that
preserves the magnetization modulus, i.e., of the form dm(r) = m(r) x év(r), where dv(r) is a small

arbitrary vector.

M;
<A(Vm)2 + fy(m) — 'LLOQ H, m-—uoM;H, - m) av

G, (m()Ho7) = [

\%

effective field

\ om
5GL = —,LL()MS (Heff . 51’1’1) dV + 2A —-0m | dS
1% s\ on

2A 1 0
= V’m — Jux +H, +H, effective field
MOMS MOMS dm / N

— — 7 N

exchange field anisotropy field magnetostatic field external field

dm(r) =m(r) x ov(r)

¥

5GL:,quS/(mxHeff)-5vdV+2A7{ (a—mxm) -ovdS
1% s\ on



G, (X)

not in equilibrium

/ , -
\ Brown’s equations
minimization of micromagnetic energy
(variational problem) this is equivalent to zero
(meta)stable micromagnetic configurations M(.) X ’ Q / surface anisotropy
zero magnetic torque / zero normal derivative
everywhere inside m X Hegp = 0 8m/8n = ( I everywhere on the
the magnet boundary of the magnet
/mAN — (m : eAN) €N
2A 2K
H.g = V?m + : m,, +H, +H, effective field
IU’OMS ,UOMS

/ N
=< 7

exchange field anisotropy field magnetostatic field external field

» The effective field contains a Maxwellian part (applied and magnetostatic fields) and a non-
Maxwellian part (exchange and anisotropy fields). They coexist and play identical roles.

» According to Brown’s equations, at equilibrium there must be complete absence of internal
magnetic torques in the magnet.

* Brown’s equations are nonlinear because the effective field is itself a function of m.

« The component of the effective field along m plays no role as a consequence of the fact that the
magnetization magnitude cannot change.



Competing energies

exchange I » uniform magn. I

magnetostatic I » zero magn. moment

magnetocrystalline

» along easy axis

external field I » along field I

v v v ¥



Characteristic parameters

Micromagnetics is governed by a small number of fundamental parameters, which emerge
once the micromagnetic energy is written in dimensionless form, by measuring energies in
units of o M?V and fields in units of M, :

G, L —
poM2V Tt

H H
a h — M
My My

9, =

The resulting dimensionless energy is (we consider for simplicity the case of uniaxial anisotropy):

gL( ()haaT (@ Vm —%hM m — h m)%

exchange Iength hardness (or quality) factor (dimensionless)
- 2A The exchange length permits one to define what is large and
EX MOME what is small in micromagnetics.

2K,

_ The hardness parameter permits one to introduce the notion
140 ]\432 of magnetically soft and magnetically hard material.




K

2K,
M2

Kk < 1 soft material

k ~ 1 hard material

Characteristic parameters

The hardness parameter permits one to introduce the notion of soft versus hard material:

For iron, where K, ~ 5 - 10" J/m3 and
oMy ~ 2 T, one finds x ~ 0.03.

There are three characteristic lengths in micromagnetics corresponding to different

combinations of the exchange length and the hardness parameter:

[thereis also: |, = [ /K =

The following order-of-magnitude estimate

gives an idea of the typical values
involved:

A~ 107" J/m

[, =5 nm

K ~ 10" J/m3

[, =~ 60 nm
/LQMsﬁlT

2vVAK,

7 but this length is less important in present context ]
/’LOMS
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(particle dimension) / [,

magnetostatic energy is a
volume effect ( of the order
of L3) whereas domain wall
energy is a surface effect
(of the order of L2)

4

large magnets develop
magnetic domains




Moving to magnetization dynamics

An isolated magnetic moment [t precesses around an external magnetic field Ha according to
the equation:

du 7 represents the absolute value of the gyromagnetic
— = —vp x H, ratio. When the magnetic moment is due to the electron
dt spin: v ~ 2.2-10° m A1 s1.

In micromagnetics, this equation is generalized in several respects:
» the magnetization M(r) takes the place of the individual magnetic moment;

* interactions inside the medium are taken into account by the micromagnetic effective field
Hest, which takes the place of the external magnetic field;

oM
— = —yM x H.,
It Y X ff

Relaxation toward equilibrium is described by additional phenomenological damping terms, to
be discussed shortly; the result is the so-called Landau-Lifshitz-Gilbert equation.



Magnetization precession

A
Heg OM /Ot
oh| = M x H ’
9 Y eff M
/mAN — (m ) eAN) Cin
2A 2K,
H.g = 2 H, +H,
ff ,qusv m + MoMsmAN +H,6 +

Wo
Magnetization precesses around the effective field, but the effective field is not constant, because it

depends on magnetization

The result can be more or less difficult to study, depending on the nature of the dependence of the
effective field on magnetization

The simplest situation is when the effective field reduces to the externally applied magnetic field only
(i.e.: uniform magnetization, no surface anisotropy, no crystal anisotropy, spherical shape):

counterclockwise precession
dM P

Hg=H,=Hie, == — =-~vH,MxXe, at constant angular frequency
dt wq around the z axis

v~22-10°mA" s e y/po ~ 176 GHz/T

Wo :7Ha
poH, ~1T = f=w/21 ~ 28 GHz




Magnetization precession e

oM
— = —vM x H.
It 8 X ff

Magnetization precesses around the effective field, but
the effective field is not constant, because it depends
on magnetization; the result will reflect the nature of the
dependence of the effective field on magnetization

However, the following general laws control the
qualitative properties of magnetization precession:

* magnetization magnitude is preserved, because
2M - OM /0t = O|M|? /0t = 0

* energy is conserved if the external field is constant
in time, because:

5GL = —,u()/ (Heﬁ“ . 5M) dV »
Vv

oM dG,

=0
dt

1

o5

inté,[_mediate

-0.5 -05

example of energy Iev1el1curves under:
(i) uniform magnetization;

(i) ellipsoidal anisotropy;

(ii) no external magnetic field.

this expression is valid under

Hg ——
ot

/ constant external field Ha

dG oM

Lo (B ) av
174

dt

energy is conserved during
magnetization precession




Characteristic length, time, and field scales

Equation for magnetization precession:

m,y = (m : eAN) €N
oM 2A 2K
WZ_W/MXHeff Heff:'qu V2m+,u0]\41 mAN+HM+Ha

The above equation is nonlinear, of partial differential (due to exchange) as well as integral (due to
magnetostatic interactions) character.

In the problem, there exist a characteristic field scale, given by the saturation magnetization M (a
typical valueis puoMs ~ 1 T, i.e., Mg ~ 10 A/m) and a characteristic time scale, given by (v M,)~
((vM,)"' ~ 6 ps when poMs ~1T)

1

By measuring time, magnetization, and fields in these units one obtains the dimensionless equation:

8_m: —mxh m = M/M;, heff:Heff/M51Ei{ne
ot et is measured in units of (7 M;) .

There is also a characteristic energy scale, defined by the characteristic energy oM S2V, where Vis
the volume of the magnet. One can thus define a dimensionless energy g, = G, /o M2V.



Relaxation toward equilibrium
9,(X)

_ not in equilibrium

gL is a thermodynamic potential with
the property that it is a decreasing
function of time for any transformation
taking place under constant external
field ha and temperature T

(meta)stable micromagnetic configurations X

>
Om mxh ; dg, the system never relaxes toward
ot o oft dt o equilibrium ! something is missing
om o :
- = m />< h.g + (dissipation) + (fluctuations)
I AN
7 | N

constant energy decreasing energy random fluctuations



Landau-Lifshitz equation

« Energy relaxation mechanisms can be taken into account by suitable phenomenological terms.
Relaxation must favor the progressive alignment of the magnetization to the effective field. In
their 1935 paper, Landau and Lifshitz introduced a contribution to the magnetization rate of
change proportional to the effective field component perpendicular to the magnetization:

heﬁ“A

. a[heg — (m - heg) m]

om
—— = —m X heg + o [hegr — (M - hegr) m]

ot

I_m X heff

» This equation can be written in the equivalent form:

dm this is the form in which the e i
_ . quation
m X hey — am x (m x heff) is most often written nowadays.

ot

* The dimensionless parameter & measures the importance of damping effects. Usually o << 1.

« Writing the equation in this form makes it evident that m - dm/Jdt = 0 under all circumstances.
This means that the micromagnetic condition of constant magnetization magnitude is preserved
by the dynamics.

« The equation is consistent with Brown’s equations, because dm/0t =0 when m X heg = 0.



Gilbert form

If one heuristically thinks of the effective field as the driving force and the magnetization rate as
the velocity, one is led to consider the typical viscous relaxation law:

om

ot

heff —

This simple law is not completely satisfactory because it affects also the magnetization magnitude.
Since we know that the magnetization modulus will stay constant irrespective of the forces acting
on the system, we should restrict the validity of the relaxation law to the component that is
perpendicular to the magnetization:

om
h.yt—a— | =
mX(eff Oé@t) 0

In addition, we need to modify this law in order to make it consistent with the precessional law,
8m/0t = —m X heg, that should be recovered in the limit of no relaxation. This suggest:

om (. om
or e Yy

or equivalently:

om om This is the Gilbert form of the Landau-Lifshitz
——OémX—:—theff

Ot Ot equation (Landau-Lifshitz-Gilbert (LLG) equation)




Equivalence of Landau-Lifshitz and Gilbert forms

If one takes the vector product m x ... of both members of the equation:

om om
——OémX—:—theff

ot ot

and one combines the resulting equation with the original equation, one obtains the following
result:

0
<1+a2) —m:—theff—OémX (theff)

ot

which coincides with the Landau-Lifshitz equation apart from a renormalization of the time unit. In
this sense the Landau-Lifshitz and Gilbert forms of the dynamic equation are mathematically
equivalent.

It should be noted that there are no strict reasons why the damping parameter & should be a
simple constant. In general it may be expected to be a function of the dynamic state of the system.



Energy relations

this term is present if energy explicitly
depends on time (e.g., if the external
magnetic field is time-dependent)

Rate of change of the system energy:

dg, Oom\ dV  0Og,

e heff . +

dt v ot )] v o ot
From the dynamic equation expressed in Gilbert form, one finds:

om om om [0Om om
hyt-— =ahg - [MX— ) =« : —aomX — | =«

om |’

ot

ot ot ot ot ot

In the case when the energy explicitly depends on time only through the external magnetic
field, one finally obtains:

__ [,
dt )y

2 dv _ (m) dh,
i% At

om

ot

m) = 5 [ mav

\ assuming that the field
is uniform in space

Under constant field the energy can only decrease. Consequently, the only admissible processes
are those of relaxation toward micromagnetic configurations corresponding to local energy
minima.



LLG dynamics in uniformly magnetized nanomagnets

The state of a uniformly magnetized nanomagnet is
described by a single vector m; magnetization dynamics
take place on the surface of the unit sphere Iml2 =1

In the case of an ellipsoidal particle with principal axes
along x,y,z, and crystal anisotropy characterized by the
same symmetry as shape anisotropy, the system energy

takes the simple quadratic form:

(D, Dy, D.) describe shape + crystal anisotropy

,external field

1 \
g, (m; h,) = 5 (Dxmi + Dymz + Dzmz) —h,-m

heg = —Dymge; — Dymye, — D,m.e, + h,
//
h.g = —0g, /0m

if the dynamics do not explicitly depend on time, e.g.,
the external field is constant, (autonomous dynamics):

¥

dynamics can be given a powerful geometrical
representation through the associated phase portrait

A €asy axis
m sphere

h,
e; hard
ellipsoidal
particle
easy . :
e, = intermediate

if D, <D, <D,,thenx axis
is the easy axis and z axis is the
hard axis



Phase portraits of magnetization dynamics

phase portrait under
ha=0and a =0 | 1

e; hard

1 W < W)y, < 1),
05 easy ¢ intermediate
05 dm 9y,
eas — =-—mxh heg = ——=
\f At eff eff om
1
g, (m) = 2 (Demy + Dymy, + Dom?)

stereographic
projection

energy
minimum

energy
minimum




Effect of damping




Landau-Lifshitz-Gilbert equation (summary)
Heff

Damping

oM ary

e —~vM x Hegr — MSM X (M X Heg)
damping precession
\\ //
oM « oM
— Mx—=—-—M x He
ot M, " Tar T

the dimensionless parameter v measures
the importance of damping effects:
usually o <1

Precession

_7M X Heff

the energy invariably decreases in
time when the applied magnetic
field is kept constant in time




Landau-Lifshitz-Gilbert equation (summary)

Landau-Lifshitz equation:

om
(1+a2) e —m X heg — am X (m X heg)
Gilbert form:
om " om “h
— —agmX — = —Im
ot 0 et
Effective field:

heg =V?’m+h, +h, +h, '

m-0m/0t =0

Oom/0t =0 when m X heg =0

Rate of change of system energy:

m — M/MS, h. = Heff/MS, time is
measured in units of (7 M) ', «
describes damping effects ( @ < 1)

lengths are measured in units of the

exchange length [, = \/2A/poM?2

the dynamics preserves the magnetization
: o 2
magnitude condition |m(r,¢)|" =1

the dynamics preserves the micromagnetic
equilibrium condition m X heg = 0

dg,
dt

)

om

2 dV

ot

o m)

dh,
dt

under constant external field, the energy
is always a decreasing function of time
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