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Spin-orbit coupling
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(2) Skew-scattering (Smit, 1955)
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VOLUME 83, NUMBER 9 PHYSICAL REVIEW LETTERS 30 Aucust 1999

Spin Hall Effect

J. E. Hirsch

Department of Physics, University of California, San Diego, La Jolla, California 92093-0319
(Received 24 February 1999)

a variety of mechanisms have been
proposed to explain the origin of the coefficient R;. These
include skew scattering by impurities and phonons, and
the “side jump” mechanism [1]. In early work it was
also proposed that the effect will arise in the absence of
periodicity-breaking perturbations |2], but this is generally
believed not to be correct [1].



Anomalous Hall effect There is a term in the Hall resistivity of a ferromag-

net when the field is applied in the z-direction. perpendicular to the plane of
the film, in addition to the normal Hall effect (3.53). This is the anomalous Hall
effect, which varies with the magnitude of the magnetization M:

0., = o(RyH + R;M). (

AN

.83)

The anomalous Hall effect is yet another consequence of spin-orbit coupling.
The symmetry of the radial component of the Lorentz force J x B which
produces the normal Hall effect is the same as the symmetry of the spin-orbit
interaction L - S'since L = r x p, p _[ S /1(,M

In a ferromagnet the anomalous I e Macroscopic average

magnetization. General /0 = C /0 +C 2 ary as 0., and as o2 .
which are associated villE L/~ xx MBEd s Deviation of the
electron trajectories due to spin-orbit interaction is known as skew scattering.

Writing ¢,,, = 1o RH', the Hall angle ¢, is defined as ¢,, /0. Thus ¢, =
@ + fo,; ais the skew scattering angle. The second term is often larger. It is
associated with the side-jump mechanism due to impurity scattering. If § ~ 0.1
nm is the side jump, the Hall angle here is §/X, which is proportional to O,y
Here A is the mean free path.
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On the theoretical front, the adoption of the Berry-phase
concepts has established a link between the AHE and the topological nature of the Hall currents. On
the experimental front, new experimental studies of the AHE in transition metals, transition-metal
oxides, spinels, pyrochlores, and metallic dilute magnetic semiconductors have established systematic
trends. These two developments, in concert with first-principles electronic structure calculations,
strongly favor the dominance of an intrinsic Berry-phase-related AHE mechanism in metallic
ferromagnets with moderate conductivity. The intrinsic AHE can be expressed in terms of the
Berry-phase curvatures and it 1s therefore an intrinsic quantum-mechanical property of a perfect
crystal.
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Berry phase effects on electronic properties _ 2
pah o Clpxx + Cprx

Di Xiao
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge,
Tennessee 37831, USA

Ming-Che Chang
Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan

Qian Niu
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(Published 6 July 2010)

Because the Berry phase contribution o) is
1ndependent of scattering, it can be readily evaluated
using first-principles methods or effective Hamiltonians.
Excellent agreement with experiments has been demon-
strated in ferromagnetic transition metals and semicon-
ductors (Jungwirth et al., 2002; Fang et al., 2003; Yao et
al.. 2004, 2007; Xiao, Yao, et al., 2006), which leaves little

room for the side-jump contribution.




Does the side jump effect exist?
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?The Advanced Science Research Center, Japan Atomic Energy Agency, Tokai 319-1195, Japan
Y{CREST, Japan Science and Technology Agency, Sanbancho 102-0075, Japan
(Dated: November 13, 2012)

The side-jump effect is a manifestation of the spin orbit interaction in electron scattering from an
atom/ion/impurity. The effect has a broad interest because of its conceptual importance for generic
spin-orbital physics, in particular the effect is widely discussed in spintronics. We reexamine the
effect accounting for the exact nonperturbative electron wave function inside the atomic core. We
find that value of the effect is much smaller than estimates accepted in literature. The reduction
factor is 1/Z2, where Z is the nucleus charge of the atom /impurity. This implies that the side-jump
effect is practically irrelevant for spintronics, the skew scattering and/or the intrinsic mechanism
always dominate the anomalous Hall and spin Hall effects.

Relativistic effects in scattering of polarized electrons

O. P. Susukov!, A. L. MiLsTEINZ, M. Morr** and S. MAEKAWA® !

' School of Physics. University of New South Wales - Sydney 2052, Australia

* Budker Institute of Nuclear Physics - 630090 Novosibirsk, Russia

3 The Advanced Science Research Center, Japan Atomic Energy Agency - Tokai 319-1195, Japan
4 CREST. Japan Science and Technology Agency - Sanbancho 102-0075, Japan

received 27 June 2013: accepted in final form 22 August 2013

Euro. Phys. Lett. 103 (2013) 47003

PACS 72.25.-b - Spin polarized transport
PACS 31.15.aj - Relativistic corrections, spin-orbit effects, fine structure; hyperfine structure
PACS 34.80.Nz - Spin dependence of cross sections; polarized beam experiments

Abstract - The right-left asymmetry (skew scattering) and the side jump effect are manifestations
of the spin-orbit interaction in scattering of polarized electrons. While the side jump effect is
less known than the right-left asymmetry, the effect is of conceptual importance for generic spin-
orbital physics, and the effect is widely discussed in spintronics. We reexamine the side jump effect
accounting for the exact nonperturbative electron wave function inside the atom/impurity /host
atomic core. We find that the size of the effect is much smaller than estimates accepted in the
literature. The reduction factor is 1/Z%, where Z is the nuclear charge. This implies that the side
jump effect is practically irrelevant, the skew scattering and/or the intrinsic mechanism always
dominate the transverse deflection of the electron beam and hence dominate the anomalous Hall
and spin Hall effects.



Theoretically:

(1) Karplus-Luttinger Intrinsic (1954) 0. . . = bp2

XX

(2) Skew-scattering (Smit, 1955) Psiew = OP

(3) Side-jump (Berger, 1970) Pside- jump = /?),O,i

All based on single type of scatters !



Theoretically:

(1) Karplus-Luttinger Intrinsic (1954) 0. . . = bﬂjx

(2) Skew-scattering (Smit, 1955) Psiew = OP

(3) Side-jump (Berger, 1970) Pside— jump = /J),ij

In r'eal mater‘ialsz IOxx = IOxxO + IOxxT

(Matthiessen's
Key Issue: should

scale with [Mor or [ ?



2. Our approach
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R=1 at interface
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PRL 103, 087206 (2009) PHYSICAL REVIEW LETTERS 21 AUGUST 2009

Proper Scaling of the Anomalous Hall Effect

Yuan Tian, Li Ye, and Xiaofeng Jin™

Surface Physics Laboratory and Physics Department, Fudan University, Shanghai 200433, China
(Received 30 March 2009; published 21 August 2009)

Working with epitaxial films of Fe, we succeeded in independent control of different scattering
processes in the anomalous Hall effect. The result clearly exposed the fundamental flaws of the
conventional scaling p sy = f(p.) between the anomalous Hall resistivity and longitudinal resistivity.
A new scaling pay = f(p, ) that also involves the residual resistivity has been established which
helps identify the intrinsic and extrinsic mechanisms of the anomalous Hall effect.
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effect accounting for the exact nonperturbative electron wave function inside the atomic core. We
find that value of the effect is much smaller than estimates accepted in literature. The reduction
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Abstract - The right-left asymmetry (skew scattering) and the side jump effect are manifestations
of the spin-orbit interaction in scattering of polarized electrons. While the side jump effect is
less known than the right-left asymmetry, the effect is of conceptual importance for generic spin-
orbital physics, and the effect is widely discussed in spintronics. We reexamine the side jump effect
accounting for the exact nonperturbative electron wave function inside the atom/impurity /host
atomic core. We find that the size of the effect is much smaller than estimates accepted in the
literature. The reduction factor is 1/Z%, where Z is the nuclear charge. This implies that the side
jump effect is practically irrelevant, the skew scattering and/or the intrinsic mechanism always
dominate the transverse deflection of the electron beam and hence dominate the anomalous Hall
and spin Hall effects.
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Anomalous Hall Effect in Ferromagnetic Metals:
Role of Phonons at Finite Temperature

Atsuo Surrape!™ and Naoto Nacaosal:??

'Department of Applied Physics, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
2Correlated Electron Research Group (CERG), RIKEN Advanced Science Institute (ASI),
Wako, Saitama 351-0198, Japan
3Cross-Correlated Materials Research Group (CMRG), RIKEN Advanced Science Institute (ASI),
Wako, Saitama 351-0198, Japan

(Received May 13, 2012: accepted June 22, 2012; published online July 18, 2012)

The anomalous Hall effect in a multiband tight-binding model is numerically studied taking into account both elastic
scattering by disorder and inelastic scattering by the electron—phonon interaction. The Hall conductivity is obtained as
a function of temperature 7', inelastic scattering rate y, chemical potential x, and impurity concentration Xxjp,,. We find
that the new scaling law holds over a wide range of these parameters; —o,, = (aor_‘_d', - [50_“%) )a_ix + b, with 0, (0,,.0)
being the conductivity tensor (with only elastic scattering), which corresponds to the recent experimental observation
[Phys. Rev. Lett. 103 (2009) 087206]. The condition of this scaling is examined. Also, it is found that the intrinsic
mechanism depends on temperature under a resonance condition.

KEYWORDS: anomalous Hall effect, inelastic scattering, phonon
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Theory with multiple competing

AH conductivity in Kubo-Streda formula

- scattering effects in the Fermi surface term
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Multivariabhle Scaling for the Anomalous Hall Effect
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We derive a general scalmg relaton for thee anomisdons Hall effect m ferromagnetic metals involving
multiple competing scattering mechanisms, described by a quadmatic hypersarface in the space spanned by
the partial resistivides. We also present expenimental findings, which show strong deviation from
previoasly found scaling fonmms when different scatlienng mechanisms compele in strength bal can be
nicely explaimed by owr theory,

DOd: 10 110 PhysRevied | 1421 7205 PACS numbers: T5.47 Np, TL15Eb, 73.5000
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Method 1: non-local spin valve
Spin injection with FM/Cu/NM bridge
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Method 3: spin transfer torque
NM/FM bilayer structure
()

R/

L. Liu, et al., Science 336, 555 (2012)

Method 2: spin pumping

FM/NM bilayer driven by Brf

Microwave

Magnetization

E. Saitoh, et al . Appl. Phys. Lett 88, 182509 (2006).

Method 4: spin Seebeck effect
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3. Conclusions
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