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To provide an introduction to the philosophy and art of 
modelling of the essential physics at play in dynamic 
magnetic systems. 

Examples will be given of how simple models can be 
constructed and applied to understand and interpret 
observable phenomena, ranging from magnetisation 
processes to high frequency spin wave dynamics. 

Along the way, an introduction to some general tools will be 
provided, including Monte Carlo models and 
micromagnetics.

Aim of lectures:
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Outline
• Modelling Dynamics: where to 

start?

– Starting points

– Phenomenology

• Some generic tools:

– Micromagnetics

– Mean field theory & Monte Carlo 
• Spin dynamics

– Torque equations

– Spinwaves & resonances
• Domains and domain walls

– Stoner-Wohlfarth models 

– Magnetic domains and domain 
walls 

With examples from PhD works!



5

Modelling: where to start?



6

Models for research & 
development: magnetic ordering, 

dynamics, transport ...

Some starting points 
for model makers
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1) Simulations
do not by themselves provide 
interpretations or insights

2) Analytic/conceptutal models
often go where simulations 
cannot

Tools
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The dark arts of 
simplification:

Energies, symmetry 
and phenomenology
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Energies
Relevant energy scales (P. W. Anderson, 1953):

1 – 10 eV Atomic Coulomb integrals
Hund's rule exchange energy
Electronic band widths
Energy/state at ef

0.1 – 1.0 eV Crystal field splitting

10-2 – 10-1 eV Spin-orbit coupling
kBTC or kBTN

10-4 eV Magnetic spin-spin coupling
Interaction of a spin with 10 kG field

10-6 – 10-5 eV Hyperfine electron-neuclear coupling
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Concept: Exchange Energy
Pauli exclusion separates like spins:

Can be energetically favourable: suppose alignment 
determines average separation. Then if:

 〈 ra 〉 ∼ 0.3 nm

rp ra

e2

r a

 ∼ 4.8 eV

〈 r p 〉 ∼ 0.31nm e2

r p

 ∼ 4.75 eV

 KeV=EE 5800.05 

… equivalent field: T=
μ

EE

B

870 
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Exchange Interactions

Hamiltonian as spin functions: (Dirac & Heisenberg)

21 σσJ=H  1,2

Pauli spin matrices

Generalised for multi-electron orbitals (van Vleck):

     babaex rSrSrrJ=H 

total spin at sites r

Exchange: electrostatic repulsion + 
quantum mechanics. 
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Using Symmetry: Exchange
Measurable moment density (not an operator):

Exchange still in Heisenberg form:

    rMρTr=rm ˆ
density matrix

   δ+jjex rmrmJ=E 

neighbours

Atomic to continuum: Expand m field about rj

              .+rmδ+rmδ+rm=rm
δ=jδ+jδ=jδ+jjδ+j ..

2
1 2
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Example: isotropic medium

Using Symmetry: Exchange

When lattice symmetry allows:

Exchange energy must be compatible with symmetry of 
the crystal

   
l

α

k

α
klex r

rm
r

rm
C=E









     zzyyxxex mm+mm+mm=E 222 

  0=
x
m

δ+
x
m

δ xx 





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Dzyaloshinski-Moriya Interaction

    jiji SSDSJS=H

Asymmetric interaction possible 
when inversion symmetry is absent:

Describes weak ferromagnetism of canted antiferromagnets: 

D = 0 D  0
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Using Symmetry: Anisotropy
Local atomic environment affects spin orientation:

[Kittel, Introduction to Solid State]

Anisotropies & symmetries: (u = m/Ms)

E ani= − K u
(1)uz

2
 − K u

(2)uz
4
+...• Uniaxial:

• Cubic:

E ani(uz)=E ani( − uz)

Spin orbit 
interaction and 
crystal field effects

E ani(ux , uy , uz)=E ani ( − ux ,u y , u z), etc.

E ani=K 4(ux
2 uy

2
+ux

2 uz
2
+uy

2 uz
2
)+...
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Using Symmetry: Dipolar Fields

wondermagnet.com

All moments interact throughout a 
sample via dipolar fields. Sample shape
creates an effective anisotropy:

θ
M

E ani=
M 2 V
2μo

(N x sin2
θ cos2

ϕ+N y sin2
θsin2

ϕ+N z cos2
θ)

ϕ

Easy direction Hard direction



It’s only Angular Momentum

Everything (nearly) important for 
magnetic dynamics can be 

understood from a toy…

Precession
Dissipation
Instabilities
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It's Only Angular Momentum

Bohr and Pauli Study 
Angular Momentum

Interesting video at: 
https://www.youtube.com/watch?v=58sryfWQOa0
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Some generic tools
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1) Simulations
do not by themselves provide 
interpretations or insights

2) Analytic/conceptual models
often go where simulations 
cannot

Tools
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Domain Patterns

ifw.dresden.de
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http://www.nanotec.es/FeBsquares_mag.jpg

http://www.phy.cam.ac.uk/

Pattern detail depends on competition between dipolar 
interactions, exchange and anisotropy.
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The Problem of Dipolar Interactions
Magnetic fields decrease slowly 
with distance-- sample shape matters

Magnetisation is generally not uniform:

wikipedia.org

Nmag.soton.ac.uk
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Tools: 
Micromagnetics



        dVhu+HuMμunKuA=uE dason 
 22 ˆ

exchange

anisotropy

applied field
magnetostatic
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Minimising the Energy

Goal: find stable (and metastable) configurations that 
define minima of the total energy E

sM
M

=u




reduced M
0=δE

Minimisation = vanishing torques:

0=
u
E

u 








 


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A Numerical Method: Finite Differences
Convert differential equations to difference equations: 

         xu
x

Δ+xu
x

Δx+xu=Δx+xu ββββ 2

2
2

2
1







         xu
x

Δ+xu
x

Δxxu=Δxxu ββββ 2

2
2

2
1







Divide magnetisation into blocks,
replace differentials, construct torque 
equations for each block
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Magnetostatic Terms

The magnetostatic terms link all blocks
throughout the sample

Maxwell equations can define a magnetostatic 
potential (if we are not worried about an electric field 
during dynamics)

Blocks are 
sources of H field

 M+Hμ=B o



0=B




0



t
D

=H




Φ=H 


M=Φ


2
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Note: Micromagnetics and GPU's
The magnetostatic calculation involves convolution over 
all blocks:

Accelerate calculations using 
Graphical Processing Units

H⃗ (i)=K̂ (i , j) ∗ M⃗ ( j)

block i

blocks j≠ i

[Vansteenkiste, et al. arXiv:1406.7635]
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Example: Mumax3
// Standard Problem #4

SetGridsize(256, 64, 1)
SetCellsize(500e-9/256, 125e-9/64, 3e-9)

Msat  = 800e3
Aex   = 13e-12
alpha = 0.02

m = uniform(1, .1, 0)
relax()
save(m)    // relaxed state

autosave(m, 200e-12)
tableautosave(10e-12)

B_ext = vector(-24.6E-3, 4.3E-3, 0)
run(1e-9)

define grid and sizes (m)

parameters (SI)

initialse M
find zero torque configuration
save configuration

save configurations every 0.2 ns
create table of m(t)

apply magnetic field
time evolution

Information & Download: 
http://mumax.github.io/index.html
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Run Standard Problem 4

https://www.youtube.com/watch?v=DPQFppEbqf4
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Approaches (with example codes)

VAMPIRE  
http://www-users.york.ac.uk/~rfle500/research/vampire/

http://nmag.soton.ac.uk

Nmag  
http://nmag.soton.ac.uk/nmag/

Finite element: useful for complex geometries

Atomistic: model atomic lattice scale variations

Finite difference: mumax3, OOMMF

MAGPAR
http://magnet.atp.tuwien.ac.at/

… and many more !
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Limitations!

Lengthscales are limited

Shapes are approximate

Timescales are limited

Classical limits: dynamics 
& thermodynamics
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Tools: 
Mean field approximation
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Thermal Fluctuations
Reduction in magnetisation:

    STM 

Replace local site field with averaged effective field:

Dynamic correlations are replaced by a static field:

exijiex BSSSJ=H  22   S
Ngμ
ZJ

=B
B

ex
ex

2
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Heisenberg Model and Mean Field
Heisenberg exchange energy:

jiij SSJ=H




Thermal averaged magnetisation (N moments):

SNgμ=M B



Fluctuations:
SS=s ii

 

   S+sS+sJ=H jiij

 
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Heisenberg Model and Mean Field
Z near neighbours: 

 22 SZN+SSZJssJ=H iji

 

Second term is the mean field:

SZJ=Bex


2

Mean field approximation: neglect first term (correlations)

jinsfluctuatio ssJ=H
 
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Reminder: Paramagnetism
Probabilities to be antiparallel (down) and parallel (up):











Tk
Bμ

N

n

B

Bexp






 

Tk
Bμ

N

n

B

Bexp

Magnetisation = difference:

   













  

Tk
Bμ

=
N

NN
=S

B

Btanh
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Generalised Paramagnetism

Brillouin function for any J: 

Average magnetisation from:     xB=SM J

Angular momentum states 
( J = 1/2, 3/2, 5/2, … ):

B

  












 x

JJ
x

J
+J

J
+J

=xBJ 2
1

coth
2
1

2
12

coth
2

12

Tk
BgJμ

=x
B

B
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Exchange: Replace B by Bex









Tk

SZJgμ
B=S

B

exB
J


Average M with mean 

field Bex:

Plot left and right hand sides to see graphical solution:



Note: Landau Ginzburg Theory
A general form for mean field theory, created by Landau 

and Ginzburg, begins with an energy that is a function 
of an order parameter y :

Allowed terms must be consistent with the symmetries of 
the problem that the order parameter y must obey. The 
equilibrium value of the order parameter minimises 
F. The coefficients represent various contributions to the 
system's energy. Temperature is introduced in the first 
coefficient:



L-G and the Ferromagnet

Let the order parameter be the ferromagnetic M that is 
uniformly magnetised over a volume V:

This energy is easily minimised with respect to M:



Energy Landscapes
This can be pictured using a plot of the energy landscape 

for F(M):
F

M

F

M

T > Tc T < Tc
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Example: Multiferroics
Coupled order 
parameters: M & P

(M = sum of canted 
antiferromagnetic 
sublattices)

Challenges:

- correlations between spin and charge distributions
- how to describe dynamics?
- how to describe effects of thermal fluctuations?
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Example Application: Multiferroics
Coupled order 
parameters: M & P

    MEbzazbaFE F+Hmm+mKmmλEPPF=F


 22

polarization part magnetization part

Mean field approximation for free energy:

magneto-
electric
coupling

Approach:
(Vincinsius Gunawan PhD 2012)
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Example Application: Multiferroics

0=F
dθ
d

[Gunawan et al., JPCM (2011)]

Landau-Ginzburg mean
field theory for P: 

Minimise free energy 
for P and q:

0=F
dP
d

 ssJBαs, BmJBgμ=m
 Brillouin function for 

components of m:

    42 βP+PTTα=PF coFE 
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Tools:
Monte Carlo methods
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Ising model and Monte Carlo
Suppose two possible states: 'up' and 'down'

Suppose near neighbour 
interactions. Probability to flip 
depends on 4 neighbours:

   







 
Tk

SJ
SP

B

i
i exp
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Sampling Random Fluctuations 
Thermal fluctuations and 2 dimensional Ising model:

Low T Near Tc Above Tc
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Constructing Averages
Fluctuations drive the system 
towards thermal equilibrium. 

Sample a distribution for averages:

 







 
 Tk

ΔE
P

B

exp

 







  Tk
ΔE

P
B

exp

       σρσA=A    










Tk
σE

Z
=σρ

B

exp
1

Key idea: s is a configuration from the ensemble of 
equilibrium spin configurations
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The Metropolis Algorithm
Sample from {s}: Start with some x, generate a  s' with a 
single spin flip.

Rules: Calculate DE = E(x) - E(s') 
1) If DE < 0, accept s' as an equilibrium fluctuation
2) If DE > 0, accept s' if P(DE) < 1

For equilibrium fluctuations, P(DE) must satisfy 
detailed balance:

        WξP=Wσ'P

 
 

 
 

     







 





Tk
σ'EξE

=ΔEP=
σ'P
ξP

=
W
W

B

exp
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Monte Carlo for the Ising Model



Note on phase transitions: 
Scaling near critical points
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Schematic of the Transition (2nd order)

[Weiss & Forrer]

Linear spinwaves

Large amplitude 
fluctuations
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Scaling

Mean field theory:     2/1
CTTTM 

Reality includes correlations:    β
CTTTM  0.34β

Note on dimensionality: 
• Ultra thin films ~ two dimensional systems  
• fluctuations destroy long range order 
• nano-thermodynamics for small elements (~ 0 D!)

Remember this for later when we 
talk about domain wall creep



Example: Interacting magnetic particles

Challenges:
- large arrays of submicron elements 
- super-paramagnetic
- long range interactions

Approach: (Zoe Budrikis, PhD 2012)
Combine Mean Field & Monte Carlo



An Artificial Antiferromagnet
(artificial square spin ice)

Shape anisotropy: Ising spins

Dipolar interactions

6 interactions but can only minimise 4

W
an

g 
e

t a
l.,

 N
a

tu
re

 (
2

0
0

6
)



Configurations

Type I

(ground)

Type II

(wall)

Type III

(defect)

Local spin configurations:

Nisoli et al., Nature Physics (2010)



Growth of Domains and Wall Motion
Type I domains separated by Type II walls:

Type III 'charge' production during wall motion

• Type I

• Type II

• Type III



Thermal fluctuations on 2 timescales:
- small volumes (reversal)

- thermal reduction of element M

Thermal evolution of domains

Configuration dependent local M

1
Tk

KV

B

enhancement

suppression



Mean field model: thermal dynamics

Mean field model for element magnetisations:

     kkj,cjj mJ+hβmB=m 2/1

Algorithm: 
- self consistent iteration for <mj>
- stochastic reversal (Monte Carlo)

Disorder: uniform distribution for K centred on Ko









2
1

r
+K=K o  ΔΔ,r 

jc mK=h



Thermal fluctuations at walls

Thermal fluctuations
largest on domain 

walls

• M = 1

• M = 0.1

(Karen Livesey PhD 2010)



Challenge: modelling kinetics 
in real time with Monte Carlo
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Continuous Time Monte Carlo
Probability for acceptance of a single flip (out of N spins):

   ΔEPΔEn
N

=Q 
1

number of spins with DE

Probability that a spin will flip
in time Dt:   






 Q

τ
Δt

=ΔtPflip exp

Rejection free algorithm: 
1) track all possible transitions
2) accept one according to random R 
3) time update determined by R

R
Q
τ

=Δt ln
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Example: Exchange Bias

Stamps, PRB 2000

M Kirschner http://magnet.atp.tuwien.ac.at

Time dependent coercivity: 
Field sweep rates

Thermal setting of bias:
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Spin Wave Dynamics
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Low Temperature Fluctuations

Energy to reverse one spin: 2 J

Superposition of ways to flip one spin:

Spinwave 
excitation

H  Jij
ij

 Si  S j

+ + …
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Model: Torque 
equations
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Excitations: Spin Waves

Excitations: Precessional dynamics

slide courtesy J-V Kim

Ground state magnetic orderings:

Note: The excitations are bosons!



Classical Precession

Transverse oscillations define wavelength



Equations of Motion
Torque equations:

applied field

exchange

anisotropy

Note: Dissipation adds additional torques



Equations of Motion: FMR
No exchange contribution for uniform precession and 
dipole field modelled as shape anisotropy (K ~ Ms).

Linearisation:

Anisotropy shifts frequency

y

z
Ms, Ha



With Exchange: Dispersion
Effect of interactions: exchange

field + anisotropy



Dzyaloshinskii-Moriya Interactions

7
4

Interface-driven DMI interaction in ultrathin ferromagnets

A. Fert, Mat. Sci. Forum (1990)
A. Fert and P. M. Levy, PRL (1980)

Moon et al. PRB 2013
Iguchi et al., ArXiv 2015

Moon, et al. PRB 88  184404

Effects of DMI on spin waves:

||Dk±)kΩ(=ω(k) 2



Dispersion: Dipole Exchange Modes
Dipolar: long range interaction terms compete 
with short range exchange interactions:



Anisotropic Propagation
Dipolar effect: dependence on propagation direction

k

k

small dipolar energy

large dipolar energy
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Spin Waves and Micromagnetics
Procedure:
1) Relax to steady state
2) Use broadband pulse to excite spin waves
3) Record time evolution (for spectral analysis)

Example: exciting precession in mumax3 script

defregion(1,rect(10e-9,125e-9))
save(regions)

driv := 0.001          // amplitude driving field
f    := 1.0e9            // frequency units
fdel := 20.*f*2.*pi   // frequency window
time := 1000./fdel  // evolve time
toff := 3./f              // offset 

B_ext = vector(-24.6E-3, 4.3E-3,driv*sin( (t-toff)*fdel )/(2*pi*(t-toff)*fdel))
run(time)

define antenna region

sinc function pulse
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Results

Ground state:

Antenna:

h(w)

Mz(w)

Spectra:

Note: Spectral analysis 
performed separately on 
mumax generated data.
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Example:Spin Waves on Spin Ice 
(Yue Li PhD ~2017)

Li, et al. J. Appl. Phys. 2017

Hillebrands, et al.
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Note: Spin Wave Dispersions
Spin wave w(k) from micromagnetics: apply 4D pulse

Venkat, Fangohr, et al., IEEE Trans. Magn. 49 (2013)

          ωt'tsincky'ysinckx'xsinc=tzy,x,h yx ,
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Reversal Processes, 
Domains and Domain Walls
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Switching of Single Domain Particles

Dynamics:
Precessional 
reversal

Stability: Thermal 
activation

H ≥ Hc
Hc

H < Hc
H

H
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Challenge: fluctuations over 
long time scales

Approach: Stoner-Wohlfarth 
models
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Single Domain Rotation

Approximate reversal as pure relaxation:

e

 θK+θBMV=E 2sincos

















2

2
1

K
BM

+VK= 

Rate depends on activation  
energy and attempt frequency 

Stoner-Wohlfarth Model

 Tkf=
τ

=Γ Bo /exp
1

 e

H

q
B
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Reversal of a Particle Ensemble

Ensemble of particles: B=0, thermal fluctuations 
reduce M

Approach to equilibrium: Chemical rate problem


  nWnW=

dt

dn


  nWnW=

dt

dn

  ΓtAe=nn=tm 
 

B = 0B



Reversal of a Particle Ensemble

Ensemble of particles: H=0, dipolar fields drive m to 0

m =1 m =0

Approach to equilibrium: Distribution of rates

Can one measure the distribution of rates P( )?
(Rebecca Fuller, PhD 2010)

    dΓeΓPA=tm Γt



Relaxation: Distributions
Distribution of energy barriers: 

Magnetic viscosity: ln(t) for broad distributions

     otΓHSC=tm ln

 Tkf=Γ Bo /exp e

       dΓePA+m=tm tΓ 

[Fuller, et al., JPCM 2009]



Relaxation: Energy Barriers
Useful measure: study dm/dt at different T

 
TAk

S
P

B

e 

Viscosity at different 
temperatures and 

fields provides 
estimates for energy 
barrier distribution

[Fuller, et al., JPCM (2009)]
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Reversal processes, 
magnetic domains and 

domain walls
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Nucleation of domains and domain walls

[Slaughter, 2000]

Routes to Reversal
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Challenge: fluctuations over long 
times and large lengthscales

Approach: a Stoner-Wohlfarth 
model for fluctuating lines
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Magnetization Processes & Domains

H

Nucleation processes:

Growth of a critical 
domain volume

μMVH=EZeeman  σA=EDW

 μMH
σ

=
A
V

c








Surface energy
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Domain & Wall Dynamics

Co
0.5 nm

Ag

Ag

• Example: MOKE study
• Perpendicular M in Co
• Method:
- saturate
- apply field pulse
- image & repeat

H
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Magnetisation Processes & Domains

Growth stops at local 
field gradients

(pinning 'pressure')

H
pressure ∼  −  ∇ Elocal

Stroboscopic 'movie' of 
domain growth
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Magnetization Processes & DW's

Wall structure:
– Topological excitation

– Surface tension

– Characteristic width


Dynamics:
– Translation & fluctuations

– Pinning & 'creep' 

– Internal modes
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DW Mobility: High Field Flow
Viscous Flow: High field driven dynamics

H

vDW ~ H
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DW Mobility: High Field Flow
Viscous Flow: High field driven dynamics

H

V(x) x

vDW ~ H
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DW Mobility Theory: Flow

Time averaged velocity (in Flow regime):

v ∝∫  ∣m×H ∣
2
d 3 x

precessional torque
Gilbert damping

Effective local field: (exchange, anisotropy, 
dipolar) H = H applied−

∂ E
∂m

t
m

m
M
α

+Hγm=
t
m

s







Torque equations of motion:

[X Wiang, P Yan, J Lu]
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DW Mobility: Low Field Creep
Creep: low field thermally activated dynamics

H t = t1

t = t1+D

t = t1+2D
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DW Mobility: Low Field Creep
Creep: low field thermally activated dynamics

H t = t1

t = t1+D

V(x) x

V(x) x

t = t1+2D

V(x) x
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DW Mobility Theory: Creep

Pinning sites oppose wall motion:
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DW Mobility Theory: Creep

Pinning sites oppose wall motion:
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DW Mobility Theory: Creep
Number of pinning sites:



L

E p= √ f pin
2 N pξ

pin force

Macroscopic wall motion through avalanche:

[Eelastic − E Zeeman]=E B ≈ U C(
H dep

H applied
)

2 ζ − 2+ D
2 − ζ

Scaling: critical field for avalanche onset
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DW Mobility Theory: Creep
Depinning rate:

Multiply by distance travelled to give velocity:

 
 









Tk

LE
τ

=
Lτ B

Bexp
11

0

 
  



















μ

applied

dep

B

C

H

H

Tk
U

τ
ξ

Lτ
Lw

=v exp
0

Expect µ = ¼ for ultra thin films.
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DW Motion: Transition
Threshold: transition from creep to viscous flow

vDW

Hc

H

Zero temperature
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DW Motion: Transition
Threshold: transition from creep to viscous flow

vDW

Hc

H

Zero temperature
























H

H

Tk
U

vv p

B

c
o exp
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DW Motion: Transition
Observed transition from creep to viscous flow:

(Peter Metaxas, PhD 2009)

[Metaxas, et al.,  Phys. Rev. Lett., 2007]
























H

H

Tk
U

vv p

B

c
o exp

Hv  
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Summary

•Approximations: Heisenberg exchange, anisotropy, 
mean field theory

•Simulations: Micromagnetic, Monte Carlo

•Analytic models: spin waves, domain walls, thermal 
activation
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