Ultrafast and Very Small.

Discover Nanoscale Magnetism with Picosecond Time Resolution and High Sensitivity

Hendrik Ohldag SLAC National Accelerator Laboratory

June 20th 2017, IEEE summer school

- IEEE Magnetics Society Home Page: www.ieeemagnetics.org
 - 3000 full members
 - 300 student members
- The Society
 - Conference organization (INTERMAG, MMM, TMRC, etc.)
 - Student support for conferences
 - Large conference discounts for members
 - Graduate Student Summer Schools
 - Local chapter activities
 - <u>Distinguished lectures</u>
- Journals (Free Electronic Access for Members)
 - IEEE Transactions on Magnetics
 - IEEE Magnetics Letters
- Online applications for IEEE membership: www.ieee.org/join
 - 360,000 members
 - IEEE student membership IEEE full membership

Outlook

1.) State of the art devices and the need for soft x-ray spectromicroscopy

- 2.) Antiferromagnetic Ferromagnetic exchange coupling
- 3.) Spin transfer across interfaces
- 4.) Imaging spin waves

Some Dinner Conversation Starters. Why is Magnetic Storage Still Relevant and Interesting?

If a hard drive read head would be a Boeing 747 and the disk the size of the earth, the 747 would fly at Mach 800, one inch above the ground and register every blade of grass without error.

It takes 6-9 months from the first steps to produce a read head until it leaves the factory in a fully – meaning bit by bit – tested hard drive.

Technology based on science awarded a Nobel prize in 2008. Costs, comparable to a toaster – with vastly different profit margins !!!

Like lasers, magnetic information storage is at the back bone of the modern economy. Between 50-100% of the worldwide GDP would vanish without it.

AND: The science is fascinating and actually fun !!!

Seagate Expansion 1TB Portable External Hard Drive USB 3.0 (STEA1000400)

\$54⁹⁹ \$69.99 **vprime** | FREE Same-Day Get it by TODAY, Jun 19

More Buying Choices \$47.71 (70 used & new offers)

Best Seller

by Seagate

West Bend Toaster Oven Breakfast Station, Egg and Muffin Sandwich Maker, Silver/Black - TEMPR100 by West Bend

\$49⁹⁵ \$79.99 √prime Get it by Tomorrow, Jun 20

More Buying Choices \$40.64 (38 used & new offers)

- Material: Platinum
- Included Components: 1
 Platinum Breakfast Station

SLAC

Example: Classical Engineering vs. Nano Engineering

1956 IBM RAMAC 5 MB, 2000 lbs, \$30.000 per month

SLAC

2016 Seagate Portable 5 TB, 0.5 lbs, \$200 once

Modern devices rely on functionalized alloys and multilayers, engineered on fundamental length scales,

 \rightarrow 60 years

Capacity 10⁶ "Density" 10⁹ Cost efficiency10¹⁰

Characterization tools need to be able to "SEE-THRU" to the atomics scale

→ Soft X-rays provide this ability

SLAC

The brightness of x-ray sources has increased by >15 orders of magnitude allowing us to follow technological advances on the nanoscale

IEEE 2017 DL - Santander

X-ray Microscopy At The Nanometer and Picosecond Scale

The time structure and wavelengths of synchrotron radiation is uniquely suited to study the fundamental processes behind technologically relevant magnetic devices.

Note: Δt (fs) = 4 / ΔE (eV)

A Very Brief History Of X-ray Microscopy

SLAC

The "power" of X-rays:

 \rightarrow Synchrotrons provide very bright, tunable and polarized x-rays.

- \rightarrow Chemical and magnetic microscopy in 4D (x,y,z,t) is possible
 - \rightarrow Sensitive to buried interfaces and very small changes in M

What Is SLAC And What Does A Synchrotron Do?

Stanford Linear Accelerator Center (SLAC), *started out as dedicated high energy physics laboratory* (1960 – mid 2000s)

SLAC National Accelerator Laboratory *today, enables accelerator based experiments* (including cosmological accelerators) in general, with a particular focus on Photon Science.

SLAC is a multidisciplinary user facility e.g.

- Life Sciences
- Applied Physics
- Astrophysics
- Chemistry

SLAC

Right: The LCLS undulator hall

Storage Rings Produce Radiation

SLAC

Synchrotrons produce directed, tunable, polarized and very intense x-rays using relativistic particle beams

The X-ray Absorption Process

Resonant core level soft x-ray absorption directly probes the local electronic valence structure. Note: Hard x-rays probe structure since wavelength is of the order of Angstrom.

The electronic valence structure depends on local symmetry and bonding

Elemental And Chemical Sensitivity

Energy of absorption resonance (binding energy of core level) \rightarrow Elemental specificity Shape of resonance DOS(E) of final states \rightarrow Chemical sensitivity

Spatial Resolution: X-ray Microscopy

SLAC

X Ray absorption can be detected in transmission, fluorescence or electron yield

 \rightarrow X-ray and electron microscopy is possible with high spatial resolution.

X-ray Magnetic Linear Dichroism

XMCD

SLAC

PRL 86, pp. 3419 (2001), PRB 64, pp. 4422 (2001), PRL 86, pp. 2878 (2001), PRL 87, pp. 7201 (2001),

PRL 91, art. no. 017203 (2003), PRL 92, art. no. 247201 (2004), PRL 96, art. no. 027203 (2006), PRB 79, art. no. 052403 (2009),

A Synchrotron Is A Pulsed X-ray Source → Temporal Resolution

SLAC

The radiation is pulsed like a <u>strobe light</u> enabling pump probe experiments with 50 ps. Significant intensity variations require normalization procedure to achieve high SNR

"Real Time" Normalization Scanning X-ray Microscope

→ Effective double lock-in at 476 MHz and 1.28 MHz with 24hr stability ~ 1ps → Enables useful normalization in STXM and SNR of $10^5 - 10^6$ after seconds

The SSRL STXM - Overview

Step 1: AFM → FM Interface

Exchange bias can be used to establish magnetic reference layers in devices. Assume that AFM is not changed by presence of FM or fields

Spins and Twins – Nickel and Oxygen !!!

Field of view: 27µm

Ni 2p linear dichroism

O 1s linear dichroism

Magnetic moment of Nickel causes XMLD (Spin Domains)

Non-cubic coordination around (non-magnetic) Oxygen causes XNLD(Twin Domains)

Separation of magnetic and crystallographic order !!!

Now we add a bit of FM Co on top.

SLAC

Bare NiO(001)

NiO after Co deposition

2nm Co on NiO(001)

AFM surface domain pattern.

Reorientation of AFM spin axis upon deposition of Co due to **exchange** coupling.

Spin reorientation in NiO in response to Co

SLAC

Step 2: FM → NM Interface

Giant Magneto Resistance and Transient Magnetization

Spin Injection Sample - Dynamic XMCD at 1.28 MHz

Stack growth A. Kent (NYU)

SLAC

Approach: Measure Cu XMCD while modulating the current

XMCD of a Nanopillar Due To Spin Injection in STXM

Note: Sign reverses for Fe \rightarrow Cu (weak vs. strong FM)

Spectroscopy shows two (!!) peaks in XMCD at E_F and max. DOS

R. Kukreja et al., Phys. Rev Lett. 115, 096601 (2015)

SLAC

Proximity Magnetization is Key

Example: 1nm Cu/Co

Non magnetic Cu becomes FM in proximity to FM Co

Cu XMCD corresponds to ~0.01-0.05 μB

→ Cu XMCD of proximity magnetization appears right at the Cu XAS edge

Concentration Dependence of Static XMCD in Alloys

Cu strong d-DOS about 0.5-1 eV above $E_{F_{r}}$ Co strong d- DOS at E_{F} - Co d-orbitals drive Cu d-orbitals towards E_{F} the more Co is added (left side)

Isolated Cu atoms next to Co atoms show XMCD at the XAS peak

IEEE 2017 DL - Santander

Z. Chao et al. to be submitted

Summary: Interfacial vers. Bulk XMCD

SLAC

Injecting a spin polarized current from Co \rightarrow Cu leads to realignment of interfacial moment via spin torque which limits spin accumulation in Cu bulk

Step 3:Spin Injection + Spin Dynamics= Spin Waves from Spin Torque

How to Detect Magnetization Dynamics – e.g. FMR

SLAC

Ferromagnetic resonance is the method of choice for a quantitative analysis of relaxation rates, magnetic anisotropy, magnetic exchange and susceptibility in a single experiment.

STXM XFMR capable of doing this with elemental and spatial resolution, addressing fundamental dynamic properties of technologically relevant devices and structures.

Spin Transfer Torque Into a Ferromagnet

A DC spin polarized current generated in the blue FM excites spin wave excitation in the second red FM, much like a bow exciting the string of a violin.

SLAC

Propagation or localization of dynamics excited at the NM-FM interface depend on the exact local geometry and field

Case 1: Longitudinal Geometry

- Current induced precession of the magnetization will reduce **out of plane M**

 \rightarrow Images of the envelope of the excitation can be obtained with x-rays parallel M

Observations

Conclusions – What is This?

SLAC

- \rightarrow Sudden onset of excitation
- \rightarrow Stability range of excitation
- \rightarrow Line profile and width (~175 nm) cannot be fitted with propagating mode

Consistent with real space image of a localized magnetic soliton.

D. Backes et al. Phys. Rev. Lett. 127205 (115), 2015

Case 2: Transverse Geometry

- Current induced precession of the in plane magnetization

→ Time resolved images of the excitation (Δ **M**) can be obtained at the excitation frequency

Spin Wave Movie

Variation of Internal Fields → Asymmetric FMR

SLAC

Internal Field = Oersted field + External field + Dipolar field from polarizing layer

Summary

SLAC

Over the past 20 years x-ray dichroism has shed light on every aspect in a spin transfer device

- → Exchange bias, AFM/FM exchange anisotropy
- \rightarrow Spin accumulation and spin transfer at NM/FM interfaces
- \rightarrow Spin transfer torque dynamics

The Team

Stanford University - SLAC National Accelerator Laboratory - Stanford Synchrotron Radiation Lightsource:

	Stefano Bonetti, Roopali Kukreja, Zhao Chen Josef Frisch, Joachim Stöhr, Hermann Dürr	
New York University:	Ferran Macià, Dirk Backes, Andrew Kent	
University of Duisburg	Ralf Meckenstock, Andreas Ney, Detlef Spoddig, Katharina Ollefs, Christian Schoeppner	
The Royal Institute of Technology:	Anders Eklund, Gunnar Malm	J. Stöhr H. C. Siegmann
Emory University:	Sergei Urazdhin	Magnetism From Fundamentals to Nanoscale Dynamics
Oakland University:	Vasyl Tyberkevich, Andrei Slavin	11
Everspin Technology:	Fred Mancoff	
Hitachi Global Storage Technologies:	Jordan Katine	ি Springer
IEEE 2017 DL - Santander	-	