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Outlook
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1.) State of the art devices and the need for soft x-ray spectromicroscopy

2.) Antiferromagnetic — Ferromagnetic exchange coupling

3.) Spin transfer across interfaces

4.) Imaging spin waves
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Some Dinner Conversation Starters.
Why is Magnetic Storage Still Relevant and Interesting?
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If a hard drive read head would be a Boeing 747 and the disk the size of the earth, the 747
would fly at Mach 800, one inch above the ground and register every blade of grass
without error.

It takes 6-9 months from the first steps to produce a read head until it leaves the factory in
a fully — meaning bit by bit — tested hard drive.

Technology based on science awarded a Nobel prize in 2008.
Costs, comparable to a toaster — with vastly different profit margins !!!

Like lasers, magnetic information storage is at the back bone of the modern economy.
Between 50-100% of the worldwide GDP would vanish without it.

AND: The science is fascinating and actually fun !!!

Seagate Expansion 1TB Portable External Hard Drive USB 3.0
(STEA1000400)
by Seagate West Bend Toaster Oven Breakfast Station, Egg and Muffin
$5499 £69.99 sprime | FREE Same-Day Sandwich Maker, Silver/Black - TEMPR100
Get it by TODAY, Jun 19 by West Bend
More Buying Choices - s 95 v 1864
$47.71 (70 used & new offers) 5 $49% $7999 prime 8 8 8 864
Get it by Tomorrow, Jun 20 » Material: Platinum

* Included Components: 1

More Buying Choices Platinum Breakfast Station

$40.64 (38 used & new offers)

IEEE 2017 DL - Santander



Example: Classical Engineering vs. Nano Engineering

- 60 years

Capacity 106
“Density” 10°
Cost efficiency1010

1956 IBM RAMAC 2016 Seagate Portable
5 MB, 2000 Ibs, $30.000 per month 5TB, 0.5 Ibs, $200 once

Modern devices rely on functionalized alloys and multilayers, engineered on fundamental length scales,
Characterization tools need to be able to “SEE-THRU” to the atomics scale

-> Soft X-rays provide this ability
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Development of X-ray Sources
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The brightness of x-ray sources has
increased by >15 orders of magnitude
allowing us to follow technological
advances on the nanoscale




X-ray Microscopy At The Nanometer and Picosecond Scale
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A Very Brief History Of X-ray Microscopy

2001 2016

1895

The “power” of X-rays:

- Synchrotrons provide very bright, tunable and polarized x-rays.
- Chemical and magnetic microscopy in 4D (x,y,z,t) is possible
- Sensitive to buried interfaces and very small changes in M
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What Is SLAC And What Does A Synchrotron Do?




SLAC Now And Then — A Changing Mission

Stanford Linear Accelerator Center (SLAC), started out as dedicated high
enerqgy physics laboratory (1960 — mid 2000s)

SLAC National Accelerator Laboratory today, enables accelerator based
experiments (including cosmological accelerators) in general, with a
particular focus on Photon Science.

SLAC is a multidisciplinary user facility e.g. & =
- Life Sciences \
- Applied Physics
- Astrophysics

- Chemistry

Right: The LCLS undulator hall
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Storage Rings Produce Radiation
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Synchrotron
Light

Synchrotrons produce directed, tunable, polarized and very intense x-rays using

relativistic particle beams
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The X-ray Absorption Process

o1 AR
[ SRy \ Y
A
% |<f|H[i>] = transition matrix element
~ overlap of 2p and 3d wavefunctions
27 _
Lif=—+ |(f|H |2 )| p, p = density of (valence) state

Fermi’ s golden rule

Resonant core level soft x-ray absorption directly probes the local electronic valence structure.
Note: Hard x-rays probe strcuture since wavelength is of the order of Angstrom.

The electronic valence structure depends on local symmetry and bonding
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Elemental And Chemical Sensitivity
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Energy of absorption resonance (binding energy of core level)> Elemental specificity

Shape of resonance DOS(E) of final states - Chemical sensitivity
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Spatial Resolution: X-ray Microscopy
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Transmission X-ray Microscopy

X-Ray Photoemisson Electron Microscopy

Scanning Transmission X-ray Microscopy
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X Ray absorption can be detected in transmission, fluorescence or electron yield

- X-ray and electron microscopy is possible with high spatial resolution.
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Element Specific Magnetic Contrast - Dichroism
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A Synchrotron Is A Pulsed X-ray Source - Temporal
Resolution
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X-ray intensity

The radiation is pulsed like a strobe light enabling pump probe experiments with 50 ps.

Significant intensity variations require normalization procedure to achieve high SNR
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“Real Time” Normalization Scanning X-ray Microscope
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- Effective double lock-in at 476 MHz and 1.28 MHz with 24hr stability ~ 1ps
- Enables useful normalization in STXM and SNR of 10° -

106 after seconds
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S. Bonetti et al. Rev. Sci. Instr. 093703, 86 (2015)




The SSRL STXM - Overview

Avalanche
ncoming x-rays Order Sorting PhotoDiode (APD)
Aperture (OSA)

)

Pillar Sample
Zone Plate

Ty
ceRededeirediide e




Step 1: AFM - FM Interface

Spin valve

Exchange Bias
AFM/FM Exchange Coupling
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Exchange Bias
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Antiferromagnet
Exchange bias can be used to establish magnetic reference layers in devices.
Assume that AFM is not changed by presence of FM or fields
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Spins and Twins — Nickel and Oxygen !!!

Ni2p linear dichroism O 1s linear dichroism

Magnetic moment of Nickel causes XMLD (Spin Domains)
Non-cubic coordination around (non-magnetic) Oxygen causes XNLD( Twin Domains)

Separation of magnetic and crystallographic order !!!
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Now we add a bit of FM Co on top.

Bare NiO(001) NiO after Co deposition 2nm Co on NiO(001)
[AFM surface domain pattern. ] Reorientation of AFM spin axis upon deposition of Co due to
exchange coupling.
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Spin reorientation in NiO in response to Co

NiO before \ NiO after

Upon Co deposition the FM spins align the AF spins parallel to the surface.
The AF does change at the interface !!!
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Step 2:

FM = NM Interface
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Spin valve

<+ Spin Injection



Giant Magneto Resistance and Transient Magnetization
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Spin Injection Sample - Dynamic XMCD at 1.28 MHz
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250 x 250 nm?
€ >
Bottom Top
Contact Contact Top Contact, Au
(50nm)

Lithography J. Katine (HGST) Stack growth A. Kent (NYU)

Approach: Measure Cu XMCD while modulating the current
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XMCD of a Nanopillar Due To Spin Injection in STXM
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<5x10-° ug per Cu atom due to spin transfer from Co - Cu.
Note: Sign reverses for Fe - Cu (weak vs. strong FM)

Spectroscopy shows two (!!) peaks in XMCD at E. and max. DOS
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R. Kukreja et al., Phys. Rev Lett. 115, 096601 (2015)
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Proximity Magnetization is Key

Example: 1nm Cu/Co

Non magnetic Cu becomes FM in proximity
to FM Co

o

Cu XMCD corresponds to ~0.01-0.05 uB

- Cu XMCD of proximity magnetization
appears right at the Cu XAS edge
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Concentration Dependence of Static XMCD in Alloys
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Cu strong d-DOS about 0.5-1 eV above Er Co strong d- DOS at E¢ - Co d-orbitals drive
Cu d-orbitals towards E. the more Co is added (left side)

Isolated Cu atoms next to Co atoms show XMCD at the XAS peak
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Summary: Interfacial vers. Bulk XMCD
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Injecting a spin polarized current from Co - Cu leads to realignment of
interfacial moment via spin torque which limits spin accumulation in Cu bulk

IEEE 2017 DL - Santander



Step 3:

Spin Injection + Spin Dynamics
= Spin Waves from Spin Torque

IEEE 2017 DL - Santander

Spin valve

Spin Torque Oscillations
Spin Waves




How to Detect Magnetization Dynamics — e.g. FMR
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Ferromagnetic resonance is the method of choice for a quantitative analysis of relaxation rates,
magnetic anisotropy, magnetic exchange and susceptibility in a single experiment.

STXM XFMR capable of doing this with elemental and spatial resolution, addressing
fundamental dynamic properties of technologically relevant devices and structures.
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Spin Transfer Torque Into a Ferromagnet

A DC spin polarized current generated in the blue FM excites spin wave excitation in
the second red FM, much like a bow exciting the string of a violin.

Propagation or localization of dynamics excited at the NM-FM interface depend on the
exact local geometry and field
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Case 1: Longitudinal Geometry

Free layer: (0.2C0|0.6Ni) x 6 (PMA)
Spacer: Cu 10 nm
Fixed layer: Py 10 nm

External field: 700 mT, out of plane

Contact: ~150 nm

- Current induced precession of the magnetization will reduce out of plane M

- Images of the envelope of the excitation can be obtained with x-rays parallel M
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Observations
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No changes up to 29mA

Onset of magnetic
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Conclusions — What is This?
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- Sudden onset of excitation

—> Stability range of excitation
-> Line profile and width (~175 nm) cannot be fitted with propagating mode

Consistent with real space image of a localized magnetic soliton.

IEEE 2017 DL - Santander D. Backes et al. Phys. Rev. Lett. 127205 (115), 2015




Case 2: Transverse Geometry

Free layer: 5nm Py
Spacer: Cu 10 nm

Fixed layer: CoFe 20 nm

External field: 70 mT, in plane
Contact: ~50x130 nm
Frequency: ~6.2 GHz

- Current induced precession of the in plane magnetization

- Time resolved images of the excitation (AM) can be obtained at the exciation
frequency
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Spin Wave Movie
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Variation of Internal Fields > Asymmetric FMR

Internal magnetic field Local FMR map
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Internal Field = Oersted field + External field + Dipolar field from polarizing layer
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T ™ 28 Avaust 2015

Over the past 20 years x-ray dichroism has shed light on every aspect in a spin
transfer device

- Exchange bias, AFM/FM exchange anisotropy
- Spin accumulation and spin transfer at NM/FM interfaces
- Spin transfer torque dynamics
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