Fundamentals of Magnetism - 2

J. M. D. Coey
School of Physics and CRANN,Trinity College Dublin
Ireland.

4. Magnetism of the electron
5. The multi-electron atom
6. The single-electron atom
7. Ions in solids

Comments and corrections please: jcoey@tcd.ie

www.tcd.ie/Physics/Magnetism

Lecture 2 covers the origin of magnetism in solids, in the spin and orbital moments of the electron. Paramagnetism of non-interacting electrons is discussed in the localized limit. The multi-electron atom is analysed, and the influence of the local crystalline environment and ligand field on its paramagnetism is explained. Finally, magnetic ordering is discussed, in terms of molecular field theory.

An elementary knowledge of atomic physics, and quantum mechanics is assumed.

4. Magnetism of the electron

Orbital and Spin Moment

(a)

(b)

Magnetism in solids is due to the angular momentum of the atomic electrons.

Two contributions to the electron moment:

- Orbital motion about the nucleus
- Spin- the intrinsic (rest frame) angular momentum.

Einstein-de Hass Experiment

Demonstrates the relation between magnetism and angular momentum.

A ferromagnetic iron rod is suspended on a torsion fibre.

The field in the solenoid is reversed, switching the direction of magnetization of the rod.

An angular impulse is delivered due to the reversal of the angular momentum of the electronsconservation of angular momentum.

Fe has 26 electrons, moment per Fe is that of 2.2 e
Paradigm shift was needed to explain
I) Amperian Currents
2) Weiss field
3) Bohr - van Leewen theorem.

Bohr-van Leeuwen Theorem

A famous and disconcerting result od classical statistical mechanics;
At any finite temperature, and in all finite electric or magnetic fields, the net magnetization of a collection of electrons in thermal equilibrium vanishes identically!

Origin of Magnetism

At this point it seems that the whole of chemistry and much of physics is understood in principle. The problem is that the equations are much to difficult to solve.....
P. A. M. Dirac

Dirac and Heisenberg in red
B. Cabrera in yellow

The electron

The magnetic properties of molecules and solids derive essentially from the magnetism of their electrons. (Nuclei also possess magnetic moments, but they are ≈ 1000 times smaller).

An electron is a point particle with:

$$
\begin{array}{lr}
\text { mass } & \mathrm{m}_{\mathrm{e}}=9.109 \quad 10^{-31} \mathrm{~kg} \\
\text { charge } & -\mathrm{e}=-1.602 \quad 10^{-19} \mathrm{C} \\
\text { intrinsic angular momentum (spin) } & 1 / 2 \hbar=0.52710^{-34} \mathrm{~J} \mathrm{~s}
\end{array}
$$

The corkscrew rule. When the tip of the right thumb traces the current, the index finger points along m .

Orbital moment

Spin

The same magnetic moment, the Bohr Magneton,

$$
\mu_{\mathrm{B}}=\mathrm{e} \hbar / 2 \mathrm{~m}_{\mathrm{e}}=9.2710^{-24} \mathrm{Am}^{2}
$$

is associated with $1 / 2 \hbar$ of spin angular momentum or \hbar of orbital angular momentum

On an atomic scale, magnetism is always associated with angular momentum. Charge is negative, hence the angular momentum and magnetic moment are oppositely directed

Orbital moment

Circulating current is $I ; I=-\mathrm{e} / \tau=-\mathrm{ev} / 2 \pi r$
The moment* is $m=I \mathcal{A} \quad m=-e v r / 2$

Bohr: orbital angular momentum ℓ is quantized in units of $\hbar ; \mathrm{h}$ is Planck' s constant $=6.62610^{-34} \mathrm{~J} \mathrm{~s}$;
$\hbar=h / 2 \pi=1.055 \quad 10^{-34} \mathrm{Js} . \quad|\ell|=n \hbar$
Orbital angular momentum:

$$
\ell=m_{\mathrm{e}} \boldsymbol{r} \times \mathbf{v}
$$

Units: J s
Orbital quantum number $\ell_{,} \ell_{\mathrm{z}}=m_{l} \hbar m_{l}=0, \pm I, \pm 2, \ldots, \pm \ell$ so $m_{\mathrm{z}}=-m_{l}\left(\mathrm{e} \hbar / 2 m_{\mathrm{e}}\right)$
The Bohr model provides us with the natural unit of magnetic moment
Bohr magneton $\mu_{\mathrm{B}}=\left(\mathrm{e} \hbar / 2 \mathrm{~m}_{\mathrm{e}}\right) \quad \mu_{\mathrm{B}}=9.27410^{-24} \mathrm{~A} \mathrm{~m}^{2} \quad m_{\mathrm{z}}=m_{\mu} \mu_{\mathrm{B}}$
In general $m=\gamma \ell \quad \gamma=$ gyromagnetic ratio Orbital motion $\gamma=-\mathrm{e} / 2 \mathrm{~m}_{\mathrm{e}}$

* Derivation can be generalized to noncircular orbits: $m=I \mathcal{A}$ for any planar orbit.

g-factor; Bohr radius; energy scale

The g-factor is defined as the ratio of magnitude of m in units of μ_{B} to magnitude of ℓ in units of \uparrow.
$\mathrm{g}=\mathrm{I}$ for orbital motion

The Bohr model also provides us with a natural unit of length, the Bohr radius

$$
\mathrm{a}_{0}=4 \pi \varepsilon_{0} \hbar^{2} / \mathrm{m}_{\mathrm{e}} \mathrm{e}^{2} \quad \mathrm{a}_{0}=52.92 \mathrm{pm}
$$

and a natural unit of energy, the Rydberg R_{0}

$$
R_{0}=\left(m / 2 \hbar^{2}\right)\left(e^{2} / 4 \pi \varepsilon_{0}\right)^{2} \quad R_{0}=13.606 \mathrm{eV}
$$

Spin moment

Spin is a relativistic effect.
Spin angular momentum s
Spin quantum number s
Spin magnetic quantum number m_{s}
$s=1 / 2$ for electrons
$m_{s}= \pm 1 / 2$ for electrons

$$
s_{z}=m_{s} \hbar \quad m_{s}= \pm 1 / 2 \text { for electrons }
$$

$$
m_{\mathrm{z}}=-\left(\mathrm{e} / \mathrm{m}_{\mathrm{e}}\right) m_{s} \hbar= \pm \mu_{\mathrm{B}}
$$

$$
m=-\left(\mathrm{e} / \mathrm{m}_{\mathrm{e}}\right) \boldsymbol{s}
$$

For spin moments of electrons we have gyromagnetic ratio and g-factor:

$$
\gamma=-\mathrm{e} / \mathrm{m}_{\mathrm{e}} \quad \mathrm{~g} \approx 2
$$

More accurately, after higher order corrections: $g=2.0023 m_{\mathrm{z}}=1.00 \mathrm{II} 6 \mu_{\mathrm{B}}$

An electron will usually have both orbital and spin angular momentum

$$
m=-\left(\mu_{\mathrm{B}} / \hbar\right)(\ell+2 \boldsymbol{s})
$$

Quantized mechanics of spin

In quantum mechanics, we represent physical observables by operators - differential or matrix.
e.g. momentum $\boldsymbol{p}=-i \hbar \nabla$; energy $p^{2} / 2 m_{e}=-\hbar^{2} \nabla^{2} / 2 m_{e}$
n magnetic basis states $\Rightarrow \mathrm{n} \times \mathrm{n}$ Hermitian matrix, $\mathrm{A}_{\mathrm{ij}}=\mathrm{A}_{\mathrm{ji}}^{*} \quad$ Pauli spin matrices
Spin operator (for s=1/2)

$$
\boldsymbol{s}=\sigma \hbar / 2
$$

$$
\hat{\boldsymbol{\sigma}}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & -i \\
i & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right]
$$

Electron: $s=1 / 2 \Rightarrow m_{s}= \pm 1 / 2$ i.e spin down and spin up states
Represented by column vectors: $|\downarrow\rangle=\left[\begin{array}{l}1 \\ 0\end{array}\right]|\uparrow\rangle=\left[\begin{array}{l}0 \\ 1\end{array}\right] \quad \boldsymbol{s}|\uparrow\rangle=-1 / 2 \hbar|\uparrow\rangle ; \boldsymbol{s}|\downarrow\rangle=1 / 2 \hbar|\downarrow\rangle$

$$
\hat{\boldsymbol{s}}^{2}=\hat{\boldsymbol{s}}_{x}^{2}+\hat{\boldsymbol{s}}_{y}^{2}+\hat{\boldsymbol{s}}_{z}^{2}=\left[\begin{array}{cc}
1 & \hat{0} \\
0 & 1
\end{array}\right] 3 \hbar^{2} / 4 \quad \text { Eigenvalues of } \mathbf{s}^{2}: \mathbf{s}(\mathbf{s}+1) \hbar^{2}
$$

The fundamental property of angular momentum in QM is that the operators satisfy the commutation relations:

$$
\left[\hat{\boldsymbol{s}}_{x}, \hat{s}_{y}\right]=i \hbar \hat{\boldsymbol{s}}_{z}, \quad\left[\hat{\boldsymbol{s}}_{y}, \hat{\boldsymbol{s}}_{z}\right]=i \hbar \hat{\boldsymbol{s}}_{x}, \quad\left[\hat{\boldsymbol{s}}_{z}, \hat{\boldsymbol{s}}_{x}\right]=i \hbar \hat{\boldsymbol{s}}_{y} . \quad \text { or } \quad \hat{\boldsymbol{s}} \times \hat{\boldsymbol{s}}=i \hbar \hat{\boldsymbol{s}} .
$$

Where $[A, B]=A B-B A$ and $[A, B]=0 \Rightarrow A$ and B^{\prime} s eigenvalues can be measured simultaneously $\quad\left[\mathbf{s}^{2}, s_{z}\right]=0$

Quantized spin angular momentum of the electron

The electrons have only two eigenstates, 'spin up' $\uparrow, m_{s}=-1 / 2$) and 'spin down' $\left(\downarrow, m_{s}=\right.$ $1 / 2$), which correspond to two possible orientations of the spin moment relative to the applied field.

Populations of the energy levels are given by Boltzmann statistics; $\propto \exp \left\{-E_{i} / k_{B} T\right\}$. The thermodynamic average $\langle m\rangle$ is evaluated from these Boltzmann populations.

$$
\langle m\rangle=\frac{\left[\mu_{B} \exp (x)-\mu_{B} \exp (-x)\right]}{[\exp (x)+\exp (-x)]}
$$

where $x=\mu_{0} \mu_{B} H / k_{B} T$.

$$
\langle m\rangle=\underline{\mu}_{\underline{B}} \tanh (x)
$$

Note that to approach saturation $x \approx 2$ At $T=300 \mathrm{~K}, \mu_{0} \mathrm{H} .=900 \mathrm{~T}$
At $T=I \mathrm{~K}, \mu_{0} H .=3 \mathrm{~K}$.

Useful conversion I $\mathrm{T} \mu_{\mathrm{B}}=0.672\left(\mu_{\mathrm{B}} / \mathrm{k}_{\mathrm{B}}\right)$

Curie-law susceptibility of localized electrons

In small fields, $\tanh (x) \approx x$, hence the susceptibility

$$
\begin{aligned}
& \chi=N\langle m\rangle / H \quad\left(N \text { is no of electrons } \mathrm{m}^{-3}\right) \quad \mathrm{I} / \chi \uparrow \\
& \chi=\mu_{0} N \mu_{\mathrm{B}}{ }^{2} / \mathrm{k}_{\mathrm{B}} T \\
& \chi=C / T, \text { where } \xrightarrow{C=\mu_{0} N \mu_{\mathrm{B}}{ }^{2} / \mathrm{k}_{\mathrm{B}}}
\end{aligned}
$$

C is the Curie constant with dimensions of temperature; Assuming an electron density N of $610^{28} \mathrm{~m}^{-3}$ gives a Curie constant $C \approx 0.5 \mathrm{~K}$. The Curie law susceptibility at room temperature is of order 10^{-3}.

Electrons in a field; paramagnetic resonance

At room temperature there is a very slight difference in thermal populations of the two spin states (hence the very small spin susceptibility of 10^{-3}). The relative population difference is $x=g \mu_{0} \mu_{B} H / 2 k_{B} T$
At resonance, energy is absorbed from the rf field until the populations are equalized.
The resonance condition is $\mathrm{h} v=g \mu_{0} \mu_{\mathrm{B}} \mathrm{H}$

$$
v / \mu_{0} H=g \mu_{\mathrm{B}} / \mathrm{h} \quad\left[=\mathrm{ge} \hbar / 2 \mathrm{~m}_{\mathrm{e}} \mathrm{~h}=\mathrm{e} / 2 \pi \mathrm{~m}_{\mathrm{e}}\right]
$$

Spin resonance frequency $f=v / 2 \pi$ is $28 \mathrm{GHzT}^{-1}$

Electrons in a field - Larmor precession

$$
\begin{aligned}
m & =\gamma \boldsymbol{I} \quad\left[\gamma=-\mathrm{e} / \mathrm{m}_{\mathrm{e}}\right] \\
\Gamma & =m \times \mathbf{B} \\
\Gamma & =\mathrm{d} \mathbf{I} / \mathrm{dt}(\text { Newton's law })
\end{aligned}
$$

$$
\mathrm{d} m / \mathrm{dt}=\gamma m \times \mathbf{B}
$$

$$
=\gamma\left|\begin{array}{ccc}
\mathbf{e}_{\mathrm{x}} & \mathbf{e}_{y} & \mathbf{e}_{\mathbf{z}} \\
m_{\mathbf{x}} & m_{\mathbf{y}} & m_{\mathbf{z}} \\
0 & 0 & \mathrm{~B}_{\mathrm{z}}
\end{array}\right|
$$

$$
\mathrm{d} m_{x} / \mathrm{dt}=\gamma m_{y} B_{z} \quad \mathrm{~d} m_{y} / \mathrm{dt}=-\gamma m_{x} B_{z} \quad \mathrm{~d} m_{z} / \mathrm{dt}=0
$$

Solution is $m(\mathrm{t})=m\left(\sin \theta \cos \omega_{\mathrm{L}} \mathrm{t}, \sin \theta \sin \omega_{\mathrm{L}} \mathrm{t}, \cos \theta\right)$

$$
\text { where } \omega_{\mathrm{L}}=\gamma \mathrm{B}_{\mathrm{z}}
$$

Magnetic moment precesses at the Larmor precession frequency

$$
f_{L}=\gamma B / 2 \pi
$$

Electrons in a field - Cyclotron resonance

Free electrons follow cyclotron orbits in a magnetic field.
Electron has velocity \mathbf{v} then it experiences a Lorentz force

$$
\boldsymbol{F}=-\mathrm{e} \boldsymbol{V} \times \mathbf{B}
$$

The electron executes circular motion about the direction of \mathbf{B}
 (tracing a helical path if $\mathrm{v}_{\|} \neq 0$)

Cyclotron frequency $\quad f_{c}=v_{\perp} / 2 \pi r$

$$
\mathrm{f}_{\mathrm{c}}=\mathrm{e} B / 2 \pi \mathrm{~m}_{\mathrm{e}}
$$

Electrons in cyclotron orbits radiate at the cyclotron frequency

Example: - Microwave oven
Since $\gamma_{\mathrm{e}}=-\left(\mathrm{e} / \mathrm{m}_{\mathrm{e}}\right)$, the cyclotron and Larmor and epr frequencies are all the same for electrons; 28.0 GHz T-1

Pauli susceptibility

We now show the \uparrow and \downarrow density of states separately. They split in a field $B=\mu_{0} H$

The splitting is really very small, $\sim 10^{-5}$ of the bandwidth in a field of I T.

$$
M=\mu_{\mathrm{B}}\left(N_{\uparrow}-N_{\downarrow}\right) / V \quad \text { Note } M \text { is magnetic moment per unit volume }
$$

At $\mathrm{T}=0$, the change in population in each band is $\Delta \mathrm{N}=1 / 2 \mathcal{D}\left(\mathrm{E}_{\mathrm{F}}\right) \mu_{0} \mu_{\mathrm{B}} H$

$$
M=2 \mu_{\mathrm{B}} \Delta N=\mathcal{D}\left(\mathrm{E}_{\mathrm{F}}\right) \mu_{0} \mu_{\mathrm{B}}^{2} H \quad \text { The dimensionless susceptibility } \chi=M / H
$$

$$
\chi_{\text {Pauli }}=\mathcal{D}\left(\mathrm{E}_{\mathrm{F}}\right) \mu_{0} \mu_{\mathrm{B}}{ }^{2} \text { It is } \sim 10^{-5} \text { and independent of } \mathrm{T}
$$

Landau diamagnetism

In the free-electron model, $\mathcal{D}\left(E_{F}\right)=(3 / 2) n / E_{F}$
Hence $\chi_{\text {Pauli }}=\left\{3 n \mu_{0} \mu_{B}{ }^{2} / 2 E_{F}\right\}\left[I+c T^{2}+\ldots\right]$ (Compare Curie law $n \mu_{0} \mu_{B}{ }^{2} / k_{B} T$) The ratio of electronic specific heat coefficient to Pauli susceptibility in the nearly-free, independent electron approximation should be a constant \mathcal{R}.
Free electron model was used by Landau to calculate the orbital diamagnetism of conduction electrons. The result is:

$$
\chi_{L}=-n \mu_{0} \mu_{B}^{2} / 2 k_{B} T_{F}
$$

exactly one third of the Pauli susceptibility, and opposite in sign.
The real band structure is taken into account in an approximate way by renormalizing the electron mass. Replace m_{e} by an effective mass m^{*}

Then

$$
\chi_{L}=-(I / 3)\left(m_{e} / m^{*}\right) \chi_{P}
$$

In some semimetals such as graphite or bismuth, m^{*} can be $\approx 0.01 \mathrm{~m}_{\mathrm{e}}$, hence the diamagnetism of the conduction electrons may sometimes be the dominant contribution to the susceptibility. ($\chi_{\mathrm{L}}=-410^{-4}$ for graphite)

Susceptibility of electrons; summary

Density of states in other dimension

```
3-d solid
\mathscr{X}(\varepsilon)\propto\mp@subsup{\varepsilon}{}{1/2}
\mathscr{D}}\varepsilon)=\mathrm{ constant
(a)
(b)
\mathcal{F}}\varepsilon)\propto\mp@subsup{\varepsilon}{}{-1/2
Discreet levels
Confinement of the
free-electron gas: (a) in two dimensions, (b) in one dimension - a quantum wire, and (c) in zero dimensions - a quantum dot.
```


Spin-Orbit Coupling

Spin and angular momentum coupled to create total angular
 momentum $\boldsymbol{j} . \quad \boldsymbol{J}=\boldsymbol{I}+\boldsymbol{s}$

$$
m=\gamma \boldsymbol{j}
$$

From the electron's point of view, the nucleus revolves round it with speed $v \Rightarrow$ current loop. It is a relativistic effect

$$
I=\mathrm{Zev} / 2 \pi r
$$

which produces a magnetic field $\mu_{0} I / 2 r$ at the centre

$$
B_{s o}=\mu_{0} \operatorname{Zev} / 4 \pi r^{2} \quad[\sim 10 T \text { for B or C }]
$$

$E=-m B$

$$
E_{\mathrm{so}}=-\mu_{\mathrm{B}} B_{\mathrm{so}}
$$

Since $r \approx a_{0} / Z$

$$
\text { and } \mathrm{m}_{\mathrm{e}} v r \approx \hbar
$$

$$
E_{\mathrm{so}} \approx-\mu_{0} \mu_{\mathrm{B}}^{2} Z^{4} / 4 \pi \mathrm{a}_{0}^{3}
$$

The spin - orbit Hamiltonian for a single electron is of the form:

$$
\mathcal{H}_{s o}=\lambda \hat{l} \cdot \hat{\boldsymbol{s}}
$$

in general $\mathcal{H}_{\mathrm{so}}=\left(1 / 2 \mathrm{~m}_{\mathrm{e}}{ }^{2} \mathrm{c}^{2} \mathrm{r}\right) \mathrm{dV} / \mathrm{dr}$ I.S
Here the two \dagger s have been assimilated into λ, making it an energy (c.f. exchange)

Orbital angular momentum

The orbital angular momentum operators also satisfy the commutation rules:

$$
I \times I=\| \hbar \quad \text { and }\left[\mathbb{R}^{2}, I_{\mathrm{z}}\right]=0
$$

Spherical polar coordinates

$$
\begin{aligned}
& x=r \sin \theta \cos \phi \\
& y=r \sin \theta \sin \phi \\
& z=r \cos \theta
\end{aligned}
$$

$$
\boldsymbol{I}=\boldsymbol{r} \times \boldsymbol{p}=-\mathrm{i} \hbar(y \partial / \partial z-z \partial / \partial y) \mathbf{e}_{x}-\mathrm{i} \hbar(z \partial / \partial x-x \partial / \partial z) \mathbf{e}_{y}-\mathrm{i} \hbar(x \partial / \partial y-y \partial / \partial x) \mathbf{e}_{z}
$$

$$
\hat{\boldsymbol{l}}_{x}=i \hbar(\sin \phi \partial / \partial \theta+\cot \theta \cos \phi \partial / \partial \phi)
$$

$$
\hat{l}_{y}=i \hbar(-\cos \phi \partial / \partial \theta+\cot \theta \sin \phi \partial / \partial \phi)
$$

$$
\hat{\boldsymbol{l}}_{z}=-i \hbar(\partial / \partial \phi)
$$

$$
\tilde{\boldsymbol{l}}^{2}=\tilde{\boldsymbol{l}}_{x}^{2}+\tilde{\boldsymbol{l}}_{y}^{2}+\tilde{\boldsymbol{l}}_{z}^{2}=-\hbar^{2}\left(\frac{\partial^{2}}{\partial \theta^{2}}+\cot \theta \frac{\partial}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right)
$$

5. The Single-electron Atom

Orbital angular momentum operators

Eigenvalues of I^{2} :

$$
\begin{aligned}
& I(I+I) \hbar^{2} \\
& I=I \text { case } \\
& m_{l}=1,0,-1 \text { corresponds to the eigenvectors }
\end{aligned}
$$

I is the orbital angular momentum quantum number
$\boldsymbol{I}_{\mathbf{x}}, \boldsymbol{I}_{\mathbf{y}}$ and $\boldsymbol{I}_{\mathbf{z}}$ operators can be represented by the matrices:
$\left[\begin{array}{ccc}0 & 1 / \sqrt{2} & 0 \\ 1 / \sqrt{2} & 0 & 1 / \sqrt{2} \\ 0 & 1 / \sqrt{2} & 0\end{array}\right] \hbar,\left[\begin{array}{ccc}0 & -i / \sqrt{2} & 0 \\ i / \sqrt{2} & 0 & -i / \sqrt{2} \\ 0 & i / \sqrt{2} & 0\end{array}\right] \hbar,\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1\end{array}\right] \hbar$
where

$$
\hat{\boldsymbol{l}}^{2}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] 2 \hbar^{2}
$$

Solution of Schrodinger's equation

Schrodinger's equation:

$$
\mathcal{H} \psi_{i}=\varepsilon_{i} \psi_{i}
$$

$$
\left[-\frac{\hbar^{2}}{2 m_{e}}\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}-\frac{1}{\hbar^{2} r^{2}} \bar{l}^{2}\right)-\frac{Z e^{2}}{4 \pi \epsilon_{0} r}\right] \psi_{i}=\varepsilon_{i} \psi_{i} .
$$

$$
\varepsilon_{n}=\frac{-Z m e^{4}}{8 \epsilon_{0}^{2} h^{2} n^{2}}=\frac{-Z R_{0}}{n^{2}}
$$

Satisfied by the wavefunctions:

$$
\psi(r, \theta, \phi)=R(r) \Theta(\theta) \Phi(\phi)
$$

Where: $\quad R(r)=V_{n}^{\ell}\left(Z r / n a_{0}\right) \exp \left[-\left(Z r / n a_{0}\right)\right] \quad\left(V_{n}^{\prime}\right.$ are Laguerre polynomials $\left.\quad V_{1}{ }_{1}=1\right)$
And the combined angular parts are $\quad Y_{\ell}^{m_{\ell}}(\theta, \phi) \propto P_{\ell}^{m_{\ell}}(\theta) e^{i m_{t \ell \phi}}$. (Legendre polynomials)
Normalized spherical harmonics:

```
\(s \quad Y_{0}^{0}=\sqrt{1 / 4 \pi}\)
p \(\quad Y_{1}^{0}=\sqrt{3 / 4 \pi} \cos \theta \quad Y_{1}^{ \pm 1}= \pm \sqrt{3 / 8 \pi} \sin \theta \exp ( \pm i \phi)\)
d \(\quad Y_{2}^{0}=\sqrt{5 / 16 \pi}\left(3 \cos ^{2} \theta-1\right) \quad Y_{2}^{ \pm 1}= \pm \sqrt{15 / 8 \pi} \sin \theta \cos \theta \exp ( \pm i \phi)\)
f \(Y_{3}^{0}=\sqrt{7 / 16 \pi}\left(5 \cos ^{3} \theta-3 \cos \theta\right) \quad Y_{3}^{ \pm 1}= \pm \sqrt{21 / 64 \pi}\left(5 \cos ^{2} \theta-1\right) \sin \theta \exp ( \pm i \phi)\)
\(s\)
p
d \(\quad Y_{2}^{ \pm 2}=\sqrt{15 / 32 \pi} \sin ^{2} \theta \exp ( \pm 2 i \phi)\)
f \(\quad Y_{3}^{ \pm 2}=\sqrt{105 / 32 \pi} \sin ^{2} \theta \cos \theta \exp ( \pm 2 i \phi) \quad Y_{3}^{ \pm 3}= \pm \sqrt{35 / 64 \pi} \sin ^{3} \theta \exp ( \pm 3 i \phi)\)
```


One-electron hydrogenic states

The three quantum number $n, l m_{l}$ denote an orbital.

Orbitals are denoted $n x_{m}$, $x=s, p, d, f .$. for $I=0, I, 2,3, \ldots$

Each orbital can accommodate at most two electrons* $\left(m_{s}= \pm \mathrm{I} / 2\right)$

	n	l	m_{l}	m_{s}	No of states
1 s	1	0	0	$\pm 1 / 2$	2
2s	2	0	0	$\pm 1 / 2$	2
$2 p$	2	1	$0, \pm 1$	$\pm 1 / 2$	6
3s	3	0	0	$\pm 1 / 2$	2
3p	3	1	$0, \pm 1$	$\pm 1 / 2$	6
3d	3	2	$0, \pm 1, \pm 2$	$\pm 1 / 2$	10
$4 s$	4	0	0	$\pm 1 / 2$	2
$4 p$	4	1	$0, \pm 1$	$\pm 1 / 2$	6
$4 d$	4	2	$0, \pm 1, \pm 2$	$\pm 1 / 2$	10
$4 f$	4	3	$0, \pm 1, \pm 2, \pm 3$	$\pm 1 / 2$	14

*The Pauli exclusion principle: No two electrons can have the same four quantum numbers.
\Rightarrow Two electrons in the same orbital must have opposite spin.

Single-electron orbitals

6. The Multi-electron Atom

The many-electron atom

$$
\mathcal{H}_{0}=\sum_{i}\left[-\left(\hbar^{2} / 2 m_{e}\right) \nabla_{i}^{2}-Z e^{2} / 4 \pi \epsilon_{0} r_{i}\right]+\sum_{i<j} e^{2} / 4 \pi \epsilon_{0} r_{i j .}
$$

- I degeneracy is lifted.
- Solution:Suppose that each electron experiences the potential of a different spherically-symmetric potential.
IFCF \qquadDiamagnet
BOLD Magnetic atom
Ferromagnet $\mathrm{T}_{\mathrm{C}}>290 \mathrm{~K}$
Antiferromagnet with $\mathrm{T}_{\mathrm{N}}>290 \mathrm{~K}$
Antiferromagnet/Ferromagnet with $\mathrm{T}_{\mathrm{N}} / \mathrm{T}_{\mathrm{C}}<290 \mathrm{~K}$

79 out of the 103 first elements are magnetic as free atoms Moments $\ll Z \mu_{B}$

Addition of angular momenta

First add the orbital and spin momenta l_{i} and s_{i} to form L and S.Then couple them to give the total J

$$
J=L+S
$$

$$
|L-S| \leq J \leq|L+S|
$$

Different J-states are termed multiplets, denoted by;

$$
{ }^{2 S+1} X_{J}
$$

Hund's rules

$$
X=S, P, D, F, \ldots \quad \text { for } \quad L=0, I, 2,3, \ldots
$$

To determine the ground-state of a multi-electron atom/ion.

1) Maximize S
2) Maximize L consistent with S.
3) Couple L and S to form J.

- Less than half full shell $J=L-S$
- More than half full shell $J=L+S$

Hund's rules; examples

$$
\begin{aligned}
& \mathrm{Fe}^{3+} 3 \mathrm{~d}^{5} \\
& S=5 / 2 \quad L=0 \quad J=5 / 2 \\
& { }^{6} S_{5 / 2}
\end{aligned}
$$

Note; Maximizing S is equivalent to maximizing $M_{s}=\Sigma m_{\text {si }}$, since $M_{s} \leq S$
$\mathrm{Co}^{2+} 3 \mathrm{~d}^{7}$

$$
\mathrm{S}=3 / 2 \quad \mathrm{~L}=3 \quad \mathrm{~J}=9 / 2
$$

${ }^{4} F_{9 / 2}$

Note; Maximizing L is equivalent to maximizing $M_{L}=\Sigma m_{\mathrm{l}}$, since $M_{L} \leq L$

$$
\begin{array}{ll}
\mathrm{Ni}^{2+} & 3 \mathrm{~d}^{8} \\
\mathrm{~S}=\mathrm{I} & \mathrm{~L}=3 \quad \mathrm{~J}=4
\end{array}
$$

${ }^{3} \mathrm{~F}_{4}$

$C e^{3+} 4 f^{1}$

$$
S=\mathrm{I} / 2 \quad \mathrm{~L}=3 \quad \mathrm{~J}=5 / 2
$$

${ }^{2} F_{5 / 2}$

$\mathrm{Nd}^{3+} 4 \mathrm{f}^{3}$
 $$
S=3 / 2 \quad L=6 \quad J=9 / 2
$$
 $\left.{ }^{4}\right|_{9 / 2}$

$$
S=5 / 2 \quad L=5 \quad J=15 / 2
$$

${ }^{6} \mathrm{H}_{15 / 2}$

Hund's rules $3 d$ and $4 f$

IEEE Santander 2017

Spin-Orbit Coupling

$$
\mathcal{H}_{s o}=\Lambda L . S
$$

Λ Is atomic the spin-orbit coupling constant

$\Lambda>0$ for the Ist half of the $3 d$ or $4 f$ series.
$\Lambda<0$ for the 2 nd half of the $3 d$ or 4 f series.
(for Hund's 3rd rule)

Compare single-electron atom case: $\mathcal{H}_{\text {so }}=\lambda I . s$

$$
\Lambda= \pm \lambda / 2 S
$$

	ion	$\Lambda(\mathrm{K})$
$3 \mathrm{~d}^{1}$	Ti^{3+}	124
$3 \mathrm{~d}^{2}$	Ti^{2+}	88
$3 \mathrm{~d}^{3}$	$\mathrm{~V}^{2+}$	82
$3 \mathrm{~d}^{4}$	Cr^{2+}	85
$3 \mathrm{~d}^{6}$	Fe^{2+}	-164
$3 \mathrm{~d}^{7}$	Co^{2+}	-272
$3 \mathrm{~d}^{8}$	Ni^{2+}	-493

$$
\text { L.S }=(I / 2)\left(\boldsymbol{J}^{2}-\mathbf{L}^{2}-\boldsymbol{S}^{2}\right)=\left(\hbar^{2} / 2\right)\left[J\left(J^{+I}\right)-L(L+I)-S(S+I)\right]
$$

Zeeman Interaction

The magnetic moment of an ion is represented by the expression $m=-(\boldsymbol{L}+2 \boldsymbol{S}) \mu_{\mathrm{B}} / \hbar$
The Zeeman Hamiltonian for the magnetic moment in a field \mathbf{B} along \mathbf{e}_{z} is $\mathcal{H} \mathcal{Z e e m a n}=-m_{\mathbf{a}} \mathbf{B}$

$$
\mathcal{H}_{\text {Zeeman }}=\left(\mu_{\mathrm{B}} / \hbar\right)\left(\boldsymbol{L}_{\mathrm{z}}+2 \boldsymbol{S}_{\mathrm{z}}\right) \mathrm{B}_{\mathrm{z}}
$$

For a particular J-multiplet the matrix elements of $\boldsymbol{L}+2 \mathbf{S}$ are proportional to those of \boldsymbol{J} (Wigner Eckart theorem)

$$
\mathcal{H}_{\text {Zeeman }} \psi_{\text {LSJM }}=g_{J} \mu_{B} M B \psi_{\text {LSJM }}
$$

Landé g-factor

The vector model of the atom, including magnetic moments. First project \boldsymbol{m} onto \boldsymbol{J}. J then precesses around \mathbf{z}.

The g-factor for the atom or ion is the ratio of the component of magnetic moment along \boldsymbol{J} in units of μ_{B} to the magnitude of the angular momentum in units of \hbar.
$g_{\boldsymbol{g}} \boldsymbol{J}=(\boldsymbol{L}+2 \boldsymbol{S})$ Take scalar product with \boldsymbol{J}
$g_{\mathrm{J}}=-\left(m_{\mathrm{J}} J / \mu_{\mathrm{B}}\right) /\left(J^{2} / \hbar\right)=-m_{\mathrm{J}} J\left(\hbar / \mu_{\mathrm{B}}\right) /[(J J+\mathrm{I})]$

but

$$
\begin{aligned}
m_{\cdot} \boldsymbol{J}= & -\left(\mu_{\mathrm{B}} / \hbar\right)\{(\mathbf{L}+2 \boldsymbol{S}) \cdot(\mathbf{L}+\boldsymbol{S})\} \quad \mathbf{J}^{2}=\mathrm{J}(\mathrm{~J}+\mathrm{I}) \hbar^{2} ; \\
& -\left(\mu_{\mathrm{B}} / \hbar\right)\left\{\left(\mathbf{L}^{2}+3 \mathbf{L} \cdot \boldsymbol{S}+2 \boldsymbol{S}^{2}\right)\right\} \\
& -\left(\mu_{\mathrm{B}} / \hbar\right)\left\{\left(\mathbf{L}^{2}+2 \mathbf{S}^{2}+(3 / 2)\left(\boldsymbol{J}^{2}-\mathbf{L}^{2}-\boldsymbol{S}^{2}\right)\right\} \text { since } \boldsymbol{J}^{2}=\mathbf{L}^{2}+\mathbf{S}^{2}+2 \mathbf{L} \cdot \mathbf{S}\right. \\
& -\left(\mu_{\mathrm{B}} / \hbar\right)\left\{\left((3 / 2) \boldsymbol{J}^{2}-(\mathrm{I} / 2) \boldsymbol{L}^{2}+(\mathrm{I} / 2) \mathbf{S}^{2}\right)\right\} \\
& -\left(\mu_{\mathrm{B}} / \hbar\right)\{((3 / 2) \mathrm{J}(\mathrm{~J}+\mathrm{I})-(\mathrm{I} / 2) \mathrm{L}(\mathrm{~L}+\mathrm{I})+(\mathrm{I} / 2) \mathrm{S}(\mathbf{S}+\mathrm{I})\}
\end{aligned}
$$

hence

$$
g=3 / 2+\{S(S+I)-L(L+I)\} / 2 J(J+I) \quad \text { Check; } g_{S}=2, g_{L}=I
$$

Co^{2+} free ion

Paramagnetic susceptibility - Brillouin theory

$$
\text { Curie law } \quad \chi=C / T
$$

C is Curie's constant. Units: Kelvin, K.
Typical values ~ IK
$\langle\mathfrak{m}\rangle=\frac{\sum_{i} \mathfrak{m}_{i} \exp \left(-\varepsilon_{i} / k_{B} T\right)}{\sum_{i} \exp \left(-\varepsilon_{i} / k_{B} T\right)}$

$$
\begin{aligned}
& \boldsymbol{B}=B_{\mathrm{z}} \\
& E=-\boldsymbol{m} . \boldsymbol{B}
\end{aligned} \quad \Rightarrow \quad\left\langle\mathfrak{m}_{z}\right\rangle=\frac{\sum_{-J}^{J}-g \mu_{B} M_{J}\left(1-\mu_{0} g \mu_{B} M_{J} H / k_{B} T\right)}{\sum_{-J}^{J}\left(1-\mu_{0} g \mu_{B} M_{J} H / k_{B} T\right)}
$$

Using the identities:

$$
\sum_{-J}^{J} 1=2 J+1 ; \quad \sum_{-J}^{J} M_{J}=0 \quad \sum_{-J}^{J} M_{J}^{2}=J(J+1)(2 J+1) / 3,
$$

and the fact that

$$
x=n\langle m\rangle / H
$$

(n is the number density of atoms/ions)
we find

$$
C=\frac{\mu_{0} n g^{2} \mu_{B}^{2} J(J+1)}{3 k_{B}}
$$

$$
\chi=\mu_{0} n m_{\text {eff }}^{2} \mu_{\mathrm{B}}^{2} / 3 \mathrm{k}_{\mathrm{B}} T
$$

Energy levels of an ion with $J=5 / 2$ in an applied field
$4 f$ ions
Table 4.6. The 4 f ions. the paramagnetic memest met and the geturation moevont mo be in enits of pap

4f		5	2	3	4	$m_{n}=g^{\prime} \boldsymbol{y}$		mer
1	Ce^{2+}	t	3	1	1	2.14	2.54	25
2	$\mathrm{Pr}{ }^{10}$	1	5	4	\#	3.20	3.58	35
3	$\mathrm{Nid}{ }^{1+}$	1	5	1	1	327	3.52	3.4
4	$\mathrm{Pm} \mathrm{m}^{17}$	2	6	4	1	2.45	2.68	
5	$\mathrm{Sm}^{3}-$	1	5	1	1	8.71	0.55	1.7
6	Kal	3	3	9	0	0	0	34
7	Cid^{+-}	3	0	4	2	7.0	7,94	8.9
8	Tb^{+1}	3	3	6	1	4.8	8.72	4.8
9	Dy ${ }^{1-}$	$\frac{1}{2}$	5	$\frac{4}{7}$	5	100	10.65	10.5
10	Ha^{1+}	2	5	8	1	100	10.61	10.4
11	Er	1	6	4	1	5.0	9.58	9.5
12	$\mathrm{T} \mathrm{m}^{1+}$	1	5	6	1	7.0	7.56	7.6
13	Y3 ${ }^{1+}$	$\underline{1}$	3	1	1	4.0	4.53	4.5

J is a good quantumpınumber

3d ions

3		5	6.	J	8	$\begin{aligned} & m, n \\ & 8 \sqrt{(\sqrt{3}+1)} \end{aligned}$	$\begin{aligned} & R_{r}= \\ & 5 \sqrt{5(5+1)} \end{aligned}$	mer
1	$\mathrm{Tr}^{3+}, \mathrm{V}^{4+}$	$\frac{1}{2}$	2	$\frac{3}{2}$	1	1.55	1.73	17
2	T8 ${ }^{1-}, \mathrm{V}^{1 /}$	1	3	2	1	1.81	283	28
3	$\mathrm{V}^{\text {d }}$, Cr^{3}	1	3	1	\#	10.78	3.87	3.8
4	$\mathrm{Cr}^{++}, \mathrm{Man}^{+}$	2	2	-			4.90	4.9
5	$\mathrm{Ma}^{1+}, \mathrm{Fe}^{1+}$	1	θ	1	2	5.92	5.92	5.9
6	$\mathrm{Fe}^{3+}, \mathrm{Co}^{3 t}$	2	2	4	1	6.71	4.90	5.4
7	$\mathrm{Co}^{+2}, \mathrm{Nr}^{3+}$	1	3	1	1	6.6.3	3.87	4.8
5	$\mathrm{N}{ }^{+}$	1	3	4	3	5.59	283	3.2
9	Ca^{2+}	1	2	1	1	3.55	1.73	19

S is a good quantum number
L is 'quenched'
IEEE Santander 2017

Magnetization curve - Brillouin theory

To calculate the complete magnetization curve, set $y=g \mu_{B} \mu_{0} H / k_{B} T$, then

$$
\langle m\rangle=g \mu_{\mathrm{B}} \partial / \partial y\left[\ln \Sigma_{-j}\right\rfloor \exp \left\{\mathrm{M}_{\mathrm{y}} \mathrm{y}\right\} \quad[\mathrm{d}(\ln \mathrm{z}) / \mathrm{dy}=(\mathrm{I} / \mathrm{z}) \mathrm{dz} / \mathrm{dy}]
$$

The sum over the energy levels must be evaluated; it can be written as

$$
\left.\exp (\mathrm{Jy})\left\{I+r+r^{2}+\ldots \ldots . . . r^{2}\right\}\right\} \quad \text { where } r=\exp \{-y\}
$$

The sum of a geometric progression $\left(I+r+r^{2}+\ldots+r^{n}\right)=\left(r^{n+1}-I\right) /(r-I)$
$\left.\therefore \Sigma_{-j}\right\} \exp \left\{M_{y} y\right\}=(\exp \{-(2 J+1) y\}-1) \exp \{y\} /(\exp \{-y\}-1)$
multiply top and bottom by exp\{y/2\}

$$
\begin{aligned}
& =[\sinh (2 J+1) y / 2] /[\sinh y / 2] \\
\langle m\rangle & \left.=g \mu_{\mathrm{B}}(\partial / \partial y) \ln \{[\sinh (2]+1) y / 2] /[\sinh y / 2]\right\} \\
& =g \mu_{\mathrm{B}} / 2\{(2 J+1) \operatorname{coth}(2 J+1) y / 2-\operatorname{coth} y / 2\}
\end{aligned}
$$

Paramagnetism - Brillouin theory

setting $x=J y$, we obtain

$$
\left\langle\mathfrak{m}_{z}\right\rangle=\mathfrak{m}_{0} \mathcal{B}_{J}(x)
$$

where $\mathcal{B}_{\mathrm{J}}(\mathrm{x})$ is the Brillouin function $\}$

$$
\left\langle\mathfrak{m}_{z}\right\rangle=\mathfrak{m}_{0}\left\{\frac{2 J+1}{2 J} \operatorname{coth} \frac{2 J+1}{2 J} x-\frac{1}{2 J} \operatorname{coth} \frac{x}{2 J}\right\}
$$

This reduces to $\langle m\rangle=\mu_{\mathrm{B}} \tanh (\mathrm{x})$ in the limit $J=1 / 2, \mathrm{~g}=2$. and $\langle m\rangle=\mathcal{L}(\mathrm{x})$ is the Langevin function $\{\operatorname{coth} \mathrm{x}-\mathrm{I} / \mathrm{x}\}$ in the large-J limit.

Magnetization curves for paramagnetic ions

Comparison of the Brillouin functions for $s=1 / 2, J=2$ and the Langevin function $(J=\infty)$

Experimental confirmation

Reduced magnetization curves of three paramagnetic salts, compared with Brillouin function predictions

Mean field theory of ferromagnetism

Weiss (1907) supposed that in addition to any externally applied field \boldsymbol{H}, there is an internal 'molecular' field in a ferromagnet proportional to its magnetization.

$$
\boldsymbol{H}^{\mathrm{i}}=\mathrm{n}_{\mathrm{w}} \boldsymbol{M}
$$

$\boldsymbol{H}^{\mathrm{i}}$ must be immense in a ferromagnet like iron to be able to induce a significant fraction of saturation at room temperature; $\mathrm{n}_{\mathrm{W}} \approx 10-1000$. The origin of these huge fields remained a mystery until Heisenberg introduced the idea of the exchange interaction in 1928.

Magnetization is given by the Brillouin function,

$$
<m>=m \mathcal{B}_{\mathrm{J}}(\mathrm{x})
$$

where now $x=\mu_{0} m H^{\mathrm{i}} / \mathrm{k}_{\mathrm{B}} T$.
The magnetization at zero temperature, $\quad M_{0}=\mathrm{N} m$ where $m=\mathrm{g} \mu_{\mathrm{B}} J$. At nonzero temperature $M_{\mathrm{s}}=\mathrm{N}<m>$

Mean field theory of ferromagnetism

In zero external field, we have $\quad M_{\mathrm{s}} / M_{0}=\mathcal{B}_{\mathrm{J}}(\mathrm{x})$
Also by eliminating H^{i} from the expressions for $H^{i}\left(H^{i}=n_{W} M_{s}\right)$ and $x\left(H^{i}=k_{B} T x / \mu_{0} m\right)$; since $M_{0}=N m$

$$
M_{s} / M_{0}=\left(N k_{B} T / \mu_{0} M_{0}^{2} n_{W}\right) x
$$

which can be rewritten in terms of the Curie constant $C=\mu_{0} N g^{2} \mu_{B}{ }^{2} J(J+I) / 3 \mathrm{k}_{\mathrm{B}}$

$$
\begin{equation*}
\left.M_{s} / M_{0}=[\mathrm{T}(\mathrm{I}+\mathrm{I}) / 3 \mathrm{C}] \mathrm{n}_{\mathrm{w}}\right] \mathrm{x} \tag{2}
\end{equation*}
$$

The simultaneous solution of (I) and (2) is found graphically, or they can be solved numerically.

Graphical solution of (I) and (2) to find the spontaneous magnetization M_{s} when $T<T_{\mathrm{C}}$. in blue for $T<T_{\mathrm{C}}, T=T_{\mathrm{C}}$ and T $>T_{C}$.

Mean field theory of ferromagnetism

At the Curie temperature, the slope of (2) is equal to the slope at the origin of the Brillouin function

For small x .

$$
\left.\mathcal{B}_{\mathrm{J}}(\mathrm{x}) \approx[(\mathrm{l}+\mathrm{I}) / 3]\right] \mathrm{x}+\ldots
$$

hence

$$
T_{\mathrm{C}}=\mathrm{n}_{\mathrm{W}} \mathrm{C}
$$

where the Curie constant $C=\mu_{0} \mathrm{Ng}^{2} \mu_{\mathrm{B}}{ }^{2} J(\mathrm{I}+\mathrm{I}) / 3 \mathrm{k}_{\mathrm{B}}$. In practice, T_{C} is used to determine n_{W}.

The spontaneous magnetization for nickel, together with the theoretical curve for $S=1 / 2$ from the mea field theory. The theoretical curve is scaled to give correct values at either end.

Exchange

Heisenberg and Dirac explained the origin of magnetism in solids in terms of the exchange interaction. It is short-range interaction, coupling the spins of nearest-neighbour atoms.
It is not due to magnetic dipolar interactions; those fields are \sim I T, and far too weak.
Nor is there any real 'molecular field' inside the sample. Since $\nabla . \boldsymbol{B}=0$, it would be observed outside as well.
It is due to interelectronic Coulomb interactions, subject to the symmetry constraints of quantum mechanics.

Interatomic exchange

$$
\mathcal{H}_{\text {Heis }}=-2 J \mathbf{S}_{\mathrm{i}} \cdot \mathbf{S}_{\mathrm{j}}
$$

$J>0 ; \quad$ ferromagnetic interatomic interaction
$J<0$; antiferromagnetic interatomic interaction
Relation between J and $H^{i} \quad \mathcal{H}_{i}=-2\left(\sum_{j} / \mathbf{S}_{\mathrm{j}}\right) . \mathbf{S}_{\mathrm{i}} \approx-\mu_{0} H^{i} m_{i}=-\mu_{0} H^{i} g \mu_{\mathrm{B}} \mathrm{S}_{\mathrm{i}}=-\mu_{0} \mathrm{n}_{\mathrm{w}} M g \mu_{B} S_{i}$

$$
T_{\mathrm{C}}=\mu_{0} \mathrm{Nn}_{\mathrm{W}} g^{2} \mu_{\mathrm{B}}{ }^{2} S(S+\mathrm{I}) / 3 \mathrm{k}_{\mathrm{B}}=2 \mathrm{Z} \int S(S+1) / 3 \mathrm{k}_{\mathrm{B}}
$$

Number of nearest-neighbours in Σ_{i}

Summary - so far

- Filled electronic shells are not magnetic (the spins are paired; $m_{s}= \pm \mathrm{I} / 2$)
- Only partly-filled shells may possess a magnetic moment
- The magnetic moment is given by $m=g \mu_{\mathrm{B}} \boldsymbol{J}$, where $\hbar \mathbf{J}$ represents the total angular momentum. For a given configuration the values of J and g_{j} in the ground state are given by Hund's rules

When the ion is embedded in a solid, the crystal field interaction is important. This is the electrostatic Coulomb interaction of an ion with its surroundings.
The third point is modified:

- Orbital angular momentum for $3 d$ ions is quenched. The spin only moment is $m \approx g \mu_{\mathrm{B}} \mathbf{S}$, with $g=2$.
- Magnetocrystalline anisotropy appears, making certain crystallographic axes easy directions of magnetization.

7. Ions in Solids

Energy scales

Magnitudes of the interactions

The Hamiltonian is now

$$
\mathcal{H}=\mathcal{H}_{0}+\mathcal{H}_{\mathrm{so}}+\mathcal{H}_{\mathrm{cf}}+\mathcal{H}_{\mathrm{z}}
$$

Typical magnitudes of energy terms (in K)

	\mathcal{H}_{0}	$\mathcal{H}_{\text {so }}$	$\mathcal{H}_{\text {cf }}$	\mathcal{H}_{z} in 1 T
$\mathbf{3 d}$	$\mathbf{1 - 5 1 0 ^ { 4 }}$	$10^{2}-10^{3}$	10^{4}	1
$4 f$	$1-610^{5}$	$1-510^{3}$	$\approx 310^{2}$	1

$\mathcal{H}_{\text {so }}$ must be considered before $\mathcal{H}_{\text {cf }}$ for $4 f$ ions, and the converse for 3 d ions. Hence J is a good quantum number for $4 f$ ions, but S is a good quantum number for $3 d$ ions. The $4 f$ electrons are generally localized, and 3d electrons are localized in oxides and other ionic compounds.

Magnitudes of the interactions

$$
\mathcal{H}_{i}=\mathcal{H}_{0}+\mathcal{H}_{\text {so }}+\quad \mathcal{H}_{z}
$$

Coulomb interactions $|L, S\rangle$ spin-orbit interaction Λ L.S |J \rangle

	ion	Λ
$3 \mathrm{~d}^{1}$	Ti^{3+}	124
$3 \mathrm{~d}^{2}$	Ti^{2+}	88
$3 \mathrm{~d}^{3}$	$\mathrm{~V}^{2+}$	82
$3 \mathrm{~d}^{4}$	Cr^{2+}	85
$3 \mathrm{~d}^{6}$	Fe^{2+}	-164
$3 \mathrm{~d}^{7}$	Co^{2+}	-272
$3 \mathrm{~d}^{8}$	Ni^{2+}	-493

Zeeman interaction $\operatorname{g} \mu_{\mathrm{B}} B . J / \hbar \quad\left|M_{\mathrm{J}}\right\rangle$

$4 \mathrm{f}^{1}$	Ce^{3+}	920
$4 \mathrm{f}^{2}$	Pr^{3+}	540
$4 \mathrm{f}^{3}$	Nd^{3+}	430
$4 \mathrm{f}^{5}$	Sm^{3+}	350
$4 \mathrm{f}^{8}$	Tb ${ }^{\text {+ }}$	-410
$4 \mathrm{f}^{9}$	Dy ${ }^{3+}$	-550
$4 \mathrm{f}^{10}$	Ho^{3+}	-780
$4 \mathrm{f}^{11}$	Er^{3+}	-1170
$4 \mathrm{f}^{12}$	Tm ${ }^{3+}$	-1900
$4 \mathrm{f}^{13}$	Yb^{3+}	

Crystal field interaction $\int \rho_{0}(\mathbf{r}) \varphi_{\mathrm{cf}}(\mathbf{r}) \mathrm{d}^{3} r$

\mathcal{H}_{0} $\mathcal{H}_{\text {so }}$ $\mathcal{H}_{\text {cf }}$ \mathcal{H}_{z} in 1 T $3 d$ $1-510^{4}$ $10^{2}-10^{3}$ 10^{4} 1 $4 f$ $1-610^{5}$ $1-510^{3}$ $\approx 310^{2}$ 1

$3 d$ and $4 f$ compared

As metallic atoms or ions the transition metals occupy one third of the volume of the rare earths.

LOCALIZED MAGNETISM
Integral number of 3 d or 4 f electrons
on the ion core; Integral number of unpaired spins;
Discreet energy levels. correlations.
$\mathrm{Ni}^{2+} \quad 3 \mathrm{~d}^{8} \quad m=2 \mu_{\mathrm{B}} \quad \mathrm{Ni} \quad 3 \mathrm{~d}^{9.44 \mathrm{~s}^{0.6}}$

DELOCALIZED MAGNETISM

Nonintegral number of unpaired spins
per atom.
Spin-polarized energy bands with strong

$\psi \approx \exp \left(-r / a_{0}\right)$
Boltzmann statistics

4f metals	localized electrons
4f compounds	localized electrons
3d compounds	localized/delocalized electrons
3d metals	delocalized electrons.

Above the ferromagnetic Curie temperature, the moments do not disappear, they just become disordered in a paramagnetic state when $T>T_{C}$.

Oxides

Oxides are usually insulating.
Structures are based on densepacked O^{2-} arrays, with cations in interstitial sites.

$$
R_{\text {oct }}=\left(2^{1 / 2}-1\right) r_{0}=58 \mathrm{pm}
$$

$$
R_{\mathrm{tet}}=\left((3 / 2)^{1 / 2}-1\right) \mathrm{r}_{\mathrm{o}}=32 \mathrm{pm}
$$

Cation radii in oxides: low spin values are in parentheses.

4-fold tetrahedral	pm	6 -fold octahedral	pm	6 -fold octahedral	pm	12 -fold substitutional	pm
Mg^{2+}	53	$\mathrm{Cr}^{4+} 3 \mathrm{~d}^{2}$	55	$\mathrm{Ti}^{3+} 3 \mathrm{~d}^{1}$	67	Ca^{2+}	134
Zn^{2+}	60	$\mathrm{Mn}^{4+} 3 \mathrm{~d}^{3}$	53	$\mathrm{~V}^{3+} 3 \mathrm{~d}^{2}$	64	Sr^{2+}	144
Al^{3+}	42		$\mathrm{Cr}^{3+} 3 \mathrm{~d}^{3}$	62	Ba^{2+}	161	
$\mathrm{Fe}^{3+} 3 \mathrm{~d}^{5}$	52	$\mathrm{Mn}^{2+} 3 \mathrm{~d}^{5}$	83	$\mathrm{Mn}^{3+} 3 \mathrm{~d}^{4}$	65	$\mathrm{~Pb}^{2+}$	149
		$\mathrm{Fe}^{2+} 3 \mathrm{~d}^{6}$	$78(61)$	$\mathrm{Fe}^{3+} 3 \mathrm{~d}^{5}$	64	Y^{3+}	119
	$\mathrm{Co}^{2+} 3 \mathrm{~d}^{7}$	$75(65)$	$\mathrm{Co}^{3+} 3 \mathrm{~d}^{6}$	$61(56)$	La^{3+}	136	
	$\mathrm{Ni}^{2+} 3 \mathrm{~d}^{8}$	69	$\mathrm{Ni}^{3^{++} 3 \mathrm{~d}^{7}}$	60	Gd^{3+}	122	

The radius of the O^{2-} anion is 140 pm

Orbital moment quenching is a cubic crystal field

- q

To demonstrate quenching of orbital angular momentum, consider the $2 p$ states $\psi^{0}, \psi^{1}, \psi^{-1}$ corresponding to $\mathrm{I}=\mathrm{I}, \mathrm{m}_{1}=0, \pm 1$.

$$
\begin{array}{lll}
\psi^{0} & = & \mathrm{R}(\mathrm{r}) \cos \theta \\
\psi^{ \pm 1} & = & \mathrm{R}(\mathrm{r}) \sin \theta \exp \{ \pm \mathrm{\iota} \phi\}
\end{array}
$$

The functions are eigenstates in the central potential V (r) but they are not eigenstates of $H_{c f}$. Suppose the oxygens can be represented by point charges q at their centres, then for the octahedron,

$$
\mathcal{H}_{\mathrm{cf}}=\mathrm{V}_{\mathrm{cf}}=\mathrm{D}\left(\mathrm{x}^{4}+\mathrm{y}^{4}+\mathrm{z}^{4}-3 \mathrm{y}^{2} \mathrm{z}^{2}-3 \mathrm{z}^{2} \mathrm{x}^{2}-3 \mathrm{x}^{2} \mathrm{y}^{2}\right)
$$

where $\mathrm{D} \approx \mathrm{eq} / 4 \pi \varepsilon_{\mathrm{o}} \mathrm{a}^{6}$. But $\psi^{ \pm 1}$ are not eigenfunctions of $\mathrm{V}_{\mathrm{cf},}$, e.g. $\int \psi_{\mathrm{i}}{ }^{*} \mathrm{~V}_{\mathrm{cf}} \psi_{\mathrm{j}} \mathrm{dV} \neq \delta_{\mathrm{ij}}$, where $\mathrm{i}, \mathrm{j}=-1,0,1$. We seek linear combinations that are eigenfunctions, namely

$$
\begin{array}{cll}
\psi^{0}=\mathrm{R}(\mathrm{r}) \cos \theta & =\mathrm{zR}(\mathrm{r})=\mathrm{p}_{\mathrm{z}} \\
(1 / \sqrt{ } 2)\left(\psi^{1}+\psi^{-1}\right)=\mathrm{R}^{\prime}(\mathrm{r}) \sin \theta \cos \phi & =\mathrm{yR}(\mathrm{r})=\mathrm{p}_{\mathrm{y}} \\
(1 / \sqrt{ } 2)\left(\psi^{1}-\psi^{-1}\right)=\mathrm{R}^{\prime}(\mathrm{r}) \sin \theta \sin \phi & =\mathrm{xR}(\mathrm{r})=\mathrm{p}_{\mathrm{x}}
\end{array}
$$

The $2 p$ eigenfunctions are degenerate in an undistorted cubic environment

$$
\begin{aligned}
\psi^{0} & =\mathrm{R}(\mathrm{r}) \cos \theta & & =\mathrm{zR}(\mathrm{r})=\mathrm{p}_{\mathrm{z}} \\
(1 / \sqrt{ } 2)\left(\psi^{1}+\psi^{-1}\right) & =\mathrm{R}^{\prime}(\mathrm{r}) \sin \theta \cos \phi & & =\mathrm{yR}(\mathrm{r})=\mathrm{p}_{\mathrm{x}} \\
(1 / \sqrt{ } 2)\left(\psi^{1}-\psi^{-1}\right) & =\mathrm{R}^{\prime}(\mathrm{r}) \sin \theta \sin \phi & & =\mathrm{xR}(\mathrm{r})=\mathrm{p}_{\mathrm{y}}
\end{aligned}
$$

$$
\mathrm{p}_{\mathrm{x}} \mathrm{p}_{\mathrm{y}} \mathrm{p}_{\mathrm{z}}
$$

Note that the z-component of angular momentum; $\mathbf{l}_{\mathbf{z}}=\mathrm{i} \hbar / \partial \phi$ is zero for these wavefunctions. Hence the orbital angular momentum is quenched.

The same is true of the $3 d$ eigenfunctions, which are
$d_{x y}=(1 / \sqrt{ } 2)\left(\psi^{2}-\psi^{-2}\right)=\quad R^{\prime}(r) \sin ^{2} \theta \sin 2 \phi \quad \approx x y R(r)$
$\overline{\overline{d_{x^{2}-y^{2}, d_{z}}}}$
$\mathrm{d}_{\mathrm{yz}}=(1 / \sqrt{ } 2)\left(\psi^{1}-\psi^{-1}\right)=$
$R^{\prime}(r) \sin \theta \cos \theta \sin \phi \approx y z R(r)$
$t_{2 g}$ orbitals
$\mathrm{d}_{\mathrm{zx}}=(1 / \sqrt{ } 2)\left(\psi^{1}+\psi^{-1}\right)=$
$\mathrm{R}^{\prime}(\mathrm{r}) \sin \theta \cos \theta \cos \phi \approx \mathrm{zxR}(\mathrm{r})$
$\mathrm{d}_{\mathrm{x}-\mathrm{y}}^{2}=(1 / \sqrt{ } 2)\left(\psi^{2}+\psi^{-2}\right)=$
$R^{\prime}(r) \sin ^{2} \theta \cos 2 \phi \quad \approx\left(x^{2}-y^{2}\right) R(r)$
$R^{\prime}(r)\left(3 \cos ^{2} \theta-1\right) \approx\left(3 z^{2}-r^{2}\right) R(r)$
e_{g} orbitals
$\overline{\overline{d_{x y} d_{y z} d_{z x}}}$

The $3 d$ eigenfunctions split into a set of three and a set of two in an undistorted cubic environment

Notation; a or b denote a nondegenerate single-electron orbital, e a twofold degenerate orbital and t a threefold degenerate orbital. Capital letters refer to multielectron states. a, A are nondegenerate and symmetric with respect to the principal axis of symmetry (the sign of the wavefunction is unchanged), b. B are antisymmetric with respect to the principal axis (the sign of the wavefunction changes). Subscripts g and u indicate whether the wavefunction is symmetric or

Orbitals in a cubic crystal field

Orbitals in the crystal field

Crystal-field theory regards the splitting of the 3d orbitals in octahedral oxygen, for example, as an electrostatic interaction with neighbouring point charges (oxygen anions). In reality the 3d and $2 p$ orbitals of oxygen overlap to form a partially covalent bond. The oxygens bonding to the 3d metals are the ligands. The overlap is greater for the e_{g} than the $t_{2 g}$ orbitals in octahedral coordination.
The overlap leads to mixed wavefunctions, producing bonding and antibonding orbitals, whose splitting increases with overlap. The hybridized orbitals are

$$
\phi=\alpha \psi_{2 p}+\beta \psi_{3 d}
$$

where $\alpha^{2}+\beta^{2}=1$.
For 3 d ions the splitting is usually $\mathrm{I}-2 \mathrm{eV}$, with the ionic and covalent contributions being of comparable magnitude

The spectrochemical series is the sequence of ligands in order of effectiveness at producing crystal/ligand field splitting.

$$
\mathrm{Br}^{-}<\mathrm{Cl}^{-}<\mathrm{F}^{-}<\mathrm{OH}^{-}<\mathrm{CO}^{2-}{ }_{3}<\mathrm{O}^{2-}<\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}<\mathrm{SO}^{2-}{ }_{3}<\mathrm{NO}_{2}^{-}<\mathrm{S}^{-}<\mathrm{CN}^{-}
$$

The bond is mostly ionic at the beginning of the series and covalent at the end.
Covalency is stronger in tetrahedral coordination but the crystal field splitting is

$$
\Delta_{\mathrm{tet}}=(3 / 5) \Delta_{\mathrm{oct}}
$$

Ligand field interaction

o-bond

One-electron energy diagrams

[^0]
Lower symmetry

As the site symmetry is reduced, the degeneracy of the one-electron energy levels is raised. For example, a tetragonal extension of the octahedron along the z-axis will lower p_{e} and raise p_{x} and p_{y}. The effect on the d-states is shown below. The degeneracy of the d-levels in different symmetry is shown in the table.

The effect of a tetragonal distortion of octahedral symmetry on the one-electron energy levels.

The splitting of the 1 -electron levels in different symmetry

	1	Cubic	Tetragonal	Trigonal	Rhombohedral
s	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
p	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{1 , 2}$	$\mathbf{1 , 2}$	$\mathbf{1 , 1 , 1}$
d	$\mathbf{3}$	$\mathbf{2 , 3}$	$\mathbf{1 , 1 , 1 , 2}$	$\mathbf{1 , 2 , 2}$	$\mathbf{1 , 1 , 1 , 1 , 1}$
\mathbf{f}	$\mathbf{4}$	$\mathbf{1 , 3 , 3}$	$\mathbf{1 , 1 , 1 , 2 , 2}$	$\mathbf{1 , 1 , 1 , 2 , 2}$	$\mathbf{1 , 1 , 1 , 1 , 1 , 1 , 1}$

IEEE Santander 2017

The Jahn-Teller effect

IEEE Santander 2017

- A system with a single electron (or hole) in a degenerate level will tend to distort spontaneously.
-The effect is particularly strong for d^{4} and d^{9} ions in octahedral symmetry $\left(\mathrm{Mn}^{3+}, \mathrm{Cu}^{2+}\right)$ which can lower their energy by distorting the crystal environment- this is the Jahn-Teller effect.
-If the local strain is $\boldsymbol{\varepsilon}$, the energy change is

$$
\delta E=-\mathrm{A} \varepsilon+\mathrm{B} \varepsilon^{2}
$$

where the first term is the crystal field stabilization energy and the second term is the increased elastic energy.
-The Jahn-Teller distortion may be static or dynamic.

High and low spin states

An ion is in a high spin state or a low spin state depending on whether the Coulomb interaction (leading to Hund's first rule (maximize S) is greater than or less than the crystal field splitting Δ_{c}

Consider a $3 d^{0}$ ion such as $\mathrm{Fe}^{3 \text { " }}$.

$U_{H}>\Delta_{\text {cf }}$. gives a High-spin satat, $5=2 \mathrm{eg}, \mathrm{FeCl}_{2} U_{H}<\Delta_{\text {cf }}$. pives a low-spin suate, $5=0$ e.g. Pyrite FeS

Crystal Field Hamiltonian

$$
\mathcal{H}_{c f}=\int \rho_{0}(r) \varphi_{c f}(r) \mathrm{d}^{3} r .
$$

Charge distribution of the ion

> potential created by the crystal

$$
\varphi_{c f}(r)=\int \frac{\rho\left(\mathbf{r}^{\prime}\right)}{4 \pi \epsilon_{0}\left|r-r^{\prime}\right|} \mathrm{d}^{3} r^{\prime} .
$$

Here $1 /\left|r-r^{\prime}\right|$ can be expanded spherical harmonics using spherical polar coordinates $r=(r, \theta, \phi)$ and $r^{\prime}=\left(r^{\prime}, \theta^{\prime}, \phi^{\prime}\right)$:

$$
\frac{1}{\left|r-r^{\prime}\right|}=\frac{1}{r^{\prime}} \sum_{n=0}^{\infty} \frac{4 \pi}{(2 n+1)}\left(\frac{r}{r^{\prime}}\right)^{n} \sum_{m=-\infty}^{\infty}(-1)^{-} Y_{n}^{-m}\left(\theta^{\prime}, \phi^{\prime}\right) Y_{=}^{m}(\theta, \phi)
$$

Hence

$$
\varphi_{d}(r, \theta, \phi)=\sum_{n=0}^{\infty} \sum_{m=-\infty}^{n} r^{n} \gamma_{n=} Y_{n}^{*}(\theta, \phi)
$$

where

$$
\gamma_{s m}=\frac{4 \pi}{(2 n+1)} \int \frac{\rho\left(r^{\prime}\right)(-1)^{-} Y_{n}^{-m}\left(\theta^{\prime}, \phi^{\prime}\right)}{r^{*+4}} \mathrm{~d}^{3} r^{\prime} .
$$

The approximation made so far is terrible.lt ignores the screening of the potential by the outer shells of the 4 fion for example, and also the covalent contribution. But it captures the symmetry of the problem. We proceed with it, but treat the crystal field coefficients as empirical parameters.

It is useful to expand the charge distribution of a central $4 f$ ion in terms of the 2^{n}-pole moments of the charge distribution, $n=2,4,6$

The quadrupole moment

$$
Q_{2}=\int \rho_{4 f}(r)\left(3 \cos ^{2} \theta-1\right) r^{2} \mathrm{~d}^{3} r
$$

The hexadecapole moment

$$
Q_{4}=\int \rho_{4 f}(r)\left(35 \cos ^{4} \theta-30 \cos ^{2} \theta+3\right) r^{4} \mathrm{~d}^{3} r
$$

The 64-pole moment

$$
Q_{6}=\int \rho_{4 f}(r)\left(231 \cos ^{6} \theta-315 \cos ^{4} \theta+105 \cos ^{2} \theta-5\right) r^{6} \mathrm{~d}^{3} r
$$

Rare earth quadrupole moments

IEEE Săantander 200107

Er

Tm

Single-ion anisotropy

Single-ion anisotropy is due to the electrostatic crystal field interaction + spin-orbit interaction. The $4 f$ charge distribution $\rho_{0}(\mathbf{r})$ interacts with the crystal field potential $\varphi_{\mathrm{cf}}(\mathbf{r})$ to stabilizes some particular orbitals; spin-orbit interaction - $\Lambda \mathbf{L} . \boldsymbol{S}$ then leads to magnetic moment alignment along some specific directions in the crystal.

The leading term in the crystal field interaction is

$$
\varepsilon_{a}=(1 / 2) Q_{2} A_{2}^{0}\left(3 \cos ^{2} \theta-1\right)
$$

where $A_{2}{ }^{0}$ is the uniaxial second-order crystal field parameter, which described the electric field gradient created by the crystal which interacts with the $4 f$ quadrupole moment. Compare $\varepsilon_{\mathrm{a}}=K_{I} \sin ^{2} \theta$
The crystal field interaction can be expressed in terms of angular momentum operators, using the Wigner-Eckart theorem

Here $B_{n}^{m}=\theta_{n}\left\langle r_{4 f}^{n}\right\rangle A_{n}^{m}$ and θ_{n} is different for each $4 f$ ion, proportional to the 2^{n}-pole moment
$\mathrm{Q}_{2}=2 \theta_{2}\left\langle\mathrm{r}_{4 \mathrm{f}}{ }^{2}\right\rangle$
$Q_{4}=8 \theta_{4}\left\langle r_{4 f}^{4}\right\rangle$
$Q_{6}=16 \theta_{6}\left\langle r_{4 f}{ }^{6}\right\rangle$
$A_{n}{ }^{m} \sim \gamma_{n m}$ parameterises the crystal field produced by the lattice.

NB. $\quad Q_{2} \neq 0$ for $J($ or $L) \geq$ I
$\mathrm{Q}_{4} \neq 0$ for $\mathrm{J}($ or L$) \geq 2$
$\mathrm{Q}_{6} \neq 0$ for $\mathrm{J}($ or L$) \geq 3$

The Stevens operators are tabulated, as well as which ones feature in each point symmetry
e.g. The leading term in any uniaxial site is the one in $\mathrm{O}_{2}{ }^{0}$

$$
\hat{\mathbf{O}}_{2}^{0}=\left[3 \hat{J}_{z}^{2}-J(J+1)\right] .
$$

The complete second order (uniaxial) cf Hamiltonian is

$$
\mathcal{H}_{c f}=\theta_{\text {PE }}\left\langle\text { E}_{B}^{2} \text { santander } A_{2017}^{0} \hat{O}_{2}^{0} A_{2}^{2} \hat{\mathbf{O}}_{2}^{2(c)}\right]
$$

Orarge distributions of the rare-earth ions. Those with a positve quadnpole momert $\theta_{2}>0$, italic typt distinguished from those with a regative quadrupole moment ($\left.0_{2}<\infty\right)$ boid type. Note the quartershel charges.

$A_{2}^{0}<0$
Examples of aton configurations th positive and neg; electric field grad the central site.

The of Hamiltonian for a site with cubic symmetry is

$$
\mathcal{H}_{c f}=\theta_{4}\left\langle r_{4 f}^{4}\right\rangle\left[A_{4}^{0} \hat{\mathbf{O}}_{4}^{0}+5 A_{4}^{4(c)} \hat{\mathbf{O}}_{2}^{2(c)}\right]+\theta_{6}\left\langle r_{4 f}^{6}\right\rangle\left[A_{6}^{0} \hat{\mathbf{O}}_{6}^{0}-21 A_{6}^{0} \hat{\mathbf{O}}_{2}^{2(c)}\right]
$$

For 3d ions only the fourth-order terms exist; (I = 2)
For 3d ions the second-order term

$$
\mathcal{H}_{c f}=\theta_{2}\left\langle r_{4 f}^{2}\right\rangle\left[A_{2}^{0} \hat{\mathbf{O}}_{2}^{0}+A_{2}^{2} \hat{\mathbf{O}}_{2}^{2(c)}\right]
$$

Is often simplified to $\mathcal{H}_{\mathrm{cf}}=\mathrm{DS}_{\mathrm{z}}{ }^{2}$ Typically $\mathrm{D} \leq \mathrm{IK}$
Kramer's theorem
It follows from time-reversal symmetry that the cf energy levels of any ion with an odd number of electrons, and therefore half-integral angular momentum, must be at least 2-fold degenerate. These are the $\left| \pm M_{j}\right\rangle$ Kramers doublets.
When J is integral, there will be a $|0\rangle$ singlet (with no magnetic moment) and a series of doublets.

Summary 2

You should now know;
$>$ Magnetism in solids is inextricably connected to angular momentum
$>$ It arises from quantized spin and orbital angular momenta of the electrons
$>$ Curie law paramagnetic susceptibility of localized electrons
$>$ Pauli susceptibility of delocalized electrons
$>$ Hund's rules for calculating the ground state of a free ion
$>$ Crystal fields in solids tend to quench orbital angilar momentum; spin survives
> Magnetic anisotropy - sources and magnitudes.
> Magnetic exchange interactions
$>$ Ferrromagnetic, ferrimagnetic and antiferromagnetic order.

MAGNETISM \& SPIN ELECTRONICS

Energy scales

[^0]: IEEE Santander 2017

