Fundamentals of Magnetism — 2

J.M.D. Coey
School of Physics and CRANN, Trinity College Dublin

Ireland.

m _T“. \ ;.“V‘v:* \\Z, ‘:‘:_‘.".._:::,:;\v \‘ e T ‘”:‘ v
Magnetism of the electron
The multi-electron atom
The single-electron atom

lons in solids

Comments and corrections please: jcoey@tcd.ie www.tcd.ie/Physics/Magnetism




Lecture 2 covers the origin of magnetism in solids, in the spin and
orbital moments of the electron. Paramagnetism of non-interacting
electrons Is discussed in the localized Ilimit. The multi-electron
atom is analysed, and the influence of the local crystalline
environment and ligand field on its paramagnetism is explained.
Finally, magnetic ordering is discussed, in terms of molecular field
theory.

An elementary knowledge of atomic physics, and quantum
mechanics is assumed.




4. Magnetism of the electron
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Orbital and Spin Moment

—|— Magnetism in solids is due to the angular momentum of the

QOD atomic electrons.

Two contributions to the electron moment:

e Orbital motion about the nucleus

e Spin- the intrinsic (rest frame) angular
momentum.

(b)
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Einstein-de Hass Experiment
Demonstrates the relation between magnetism and angular momentum.

‘ A ferromagnetic iron rod is suspended on a torsion
fibre.

The field in the solenoid is reversed, switching the
" Torsionfibre  direction of magnetization of the rod.

An angular impulse is delivered due to the reversal
of the angular momentum of the electrons-
conservation of angular momentum.

Fe has 26 electrons, moment per Fe is that of 2.2¢

Paradigm shift was needed to explain
\ ) Amperian Currents
2) WVeiss field
Ferromagnetic rod
3) Bohr - van Leewen theorem.
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Bohr-van Leeuwen Theorem

A famous and disconcerting result od classical statistical mechanics;

At any finite temperature, and in all finite electric or magnetic fields, the net magnetization of a
collection of electrons in thermal equilibrium vanishes identically!
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Origin of Magnetism

At this point it seems that the whole of chemistry and much of physics is understood in principle.The problem
is that the equations are much to difficult to solve..... P. A. M. Dirac
Dirac and Heisenberg in red B. Cabrera in yellow




The electron

The magnetic properties of molecules and solids derive essentially from the magnetism of their
electrons. (Nuclei also possess magnetic moments, but they are = 1000 times smaller).

An electron is a point particle with:
mass m_= 9.109 103! kg

(S

charge -e =-1.602 107 C
intrinsic angular momentum (spin) 2h = 0.527 1034 s

: The same magnetic moment,
S SN 74 the Bohr Magneton,
. —|— ug = eh/2m,_ = 9.27 1024 Am?
The corkscrew rule. When 1 | is associated with %2h of spin
il S angular morentur or h of
index finger points orbital angular momentum
along m Orbital moment Spin

On an atomic scale, magnetism is always associated with angular momentum. Charge is
negative, hence the angular momentum and magnetic moment are oppositely directed
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Orbital moment

Circulating current is I; I = -e/t = -ev/2mr

m
¢ Nucieus
s Catan The moment* is 7722=1A #271= -evr/2
. Ze
°°°°° T reeclee@a” Bohr: orbital angular momentum £ is quantized in units of
2 h; h is Planck’ s constant = 6.626 10734 ] s;

4 Electron  { = h/2r = 1.055 103 s.  |¢| = nh

Orbital angular momentum: £=mrxv Units: | s

Orbital quantum number £, £,= mh m, = 0,x1,+2,...+¢ so 2, = -m(eh/2m)
The Bohr model provides us with the natural unit of magnetic moment

Bohr magneton |pg = (eh/2m,) | yg = 9.274 10-%* A m? 7, = mug

In general | 72 =4 Y = gyromagnetic ratio ~ Orbital motion  y = -e/2m,

* Derivation can be generalized to noncircular orbits: 772 = IA for any planar orbit.
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g-factor; Bohr radius; energy scale

The g-factor is defined as the ratio of magnitude of 72zin units of pyg to magnitude of /
in units of h.
g = | for orbital motion
The Bohr model also provides us with a natural unit of length, the Bohr radius
a, = 4me h?/m_ e? ag = 52.92 pm

and a natural unit of energy, the Rydberg R,

R, = (m/2h2)(e?/4ne,)? R, = 13.606 eV
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Spin moment

Spin is a relativistic effect.
Spin angular momentum s

Spin quantum number s s = Y2 for electrons
Spin magnetic quantum number m m, = =2 for electrons
s,= mh m= =2 for electrons

m, = -(e/my)m.h = tpg m = -(e/m,)s

For spin moments of electrons we have gyromagnetic ratio and g-factor:
Y = -e/m, g=2

More accurately, after higher order corrections: g =2.0023 77z, = 1.00116pg

An electron will usually have both orbital and spin angular momentum

m = - (ug/ ) (£ + 25)
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Quantized mechanics of spin

In quantum mechanics, we represent physical observables by operators — differential or matrix.

e.g. momentum P = -ihV; energy p%2m_ = -h?V2/2m,_

—

n magnetic basis states = n x n Hermitian matrix, Aij=A>'<ji

Spin operator (for s = /2 )

s = oh/2

Electron:s = /2 = m_=%'>2 i.e spin down and spin up states
} 1) = [ 0 }

Represented by column vectors: || ) = [ 1
0 1

L Dl
_{O l}dhﬂl

e

L)

L o
+ 8

S W

2 -
+ 8

W

-~

= 2 h.sy.

3,,8.] = ih8,, |[3.,3,]

Eigenvalues of s

8° = 83
The fundamental property of angular momentum in QM is that the operators satisfy the commutation relations:

Pauli spin matrices

0 1 0
' i 0 |’[0 -1
sn=-%h|t): si)= v%h|l)

1 0 —i
1 0 [°]

s(s+1)h?

8 x 8§ =1ih8.

or
[s%5,] =0
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Where [A,B] =AB - BA and [A,B] = 0 = A and B’ s eigenvalues can be measured simultaneously




Quantized spin angular momentum of the electron

- 172

gV[s(s+1)]1h?

s=1 1/2
2uougH ¢

-1/2

1/2

The electrons have only two eigenstates, ‘spin up’ (1, m, = -'2) and ‘spin down (|, m, =
/2), which correspond to two possible orientations of the spin moment relative to the
applied field.
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Spin magnetization of localized electrons

Populations of the energy levels are given by Boltzmann statistics; o exp{-E/kgT}. The

thermodynamic average (72) is evaluated from these Boltzmann populations.

-l - el el el -l

(m2) = [ugexp(x) - ugexp(-x)] ol

[exp(x) + exp(-x)]
0.8 \
“ Linear susceptibility

L]
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|

where x = pougH/kgT.
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Note that to approach saturation x = 2
At T =300 K, py,H.=900T
AtT = IK, pH. = 3K. 4

0 2 4

Useful conversion | Tug = 0.672 (pg/kp)
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Curie-law susceptibility of localized electrons

In small fields, tanh(x) = x, hence the susceptibility

v = N{(m)H (N is no of electrons m3) 1/ A

X = HoNug?/kgT

Slope C
This is the famous Curie law for susceptibility, which varies as T-'.

In other terms

¥ = CIT, where | C= p,Nug?k;

C is the Curie constant with dimensions of temperature;
Assuming an electron density N of 6 1028 m-3 gives a Curie constant C = 0.5 K.
The Curie law susceptibility at room temperature is of order 10-3.
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Electrons in a field; paramagnetic resonance

my

S

s="% 12 / hf
QOMBH ¢

-1/2

At room temperature there is a very slight difference in thermal populations of the two
spin states (hence the very small spin susceptibility of 103). The relative population
difference is x = gu ugH/2k,T

At resonance, energy is absorbed from the rf field until the populations are equalized.

The resonance condition is hv = gu,ugH
VInH = gug/h [= geh/2m_ h = e/2 T m ]

Spin resonance frequency f = v/2n is 28 GHz T/
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Electrons in a field - Larmor precession

m= vyl [y=-e/m]

I’ =mxB

I' =dl/dt (Newton’s law)

dm/dt=ymxB

=Y

e e e,

m, my, m,
0 0 B,

I’ =mxB

dm,/dt =ymB, dm/dt=-ymB, dm,/dt=0

Solution is m(t) = m ( sin cosw, t, sinO sinwt, cosO )
where w, = vyB,

Magnetic moment precesses at the Larmor precession frequency ‘f,_ =vyB/2x ‘

dM/dt = yM x B — ore,, x dM/dt 28 GHz T-! for spin
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Electrons in a field — Cyclotron resonance

Free electrons follow cyclotron orbits in a magnetic field.
Electron has velocity v then it experiences a Lorentz force

F=-evxB

The electron executes circular motion about the direction of B
(tracing a helical path if v = 0)

Cyclotron frequency f_= v, /2mr

C

f. = eB/2;wm,

Electrons in cyclotron orbits radiate at the cyclotron frequency

Example: — Microwave oven

Since vy, = -(e/m,), the cyclotron and Larmor and epr frequencies
are all the same for electrons; 28.0 GHz T-!
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Pauli susceptibility

We now show the 1 and | density of states separately. They split in a field B = u,H

D, ()

E

The splitting is really very small, ~ 10> of the bandwidth in a field of | T.

M = pg(Ny - NIV Note M is magnetic moment per unit volume
AtT = 0, the change in population in each band is AN = "2 D(E;)u,ugH
M =2us AN = D(E)uoug?H The dimensionless susceptibility x = M/H

Xpaui = D(EF)uouug?

It is ~ 10~ and independent of T
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Landau diamagnetism

In the free-electron model, D(E;) = (3/2)n/E;

Hence p,,i = {3nuoug?/2E:}[1 + cT? + ...] (Compare Curie law nuyug?/kgT)
The ratio of electronic specific heat coefficient to Pauli susceptibility in the nearly-free,
independent electron approximation should be a constant R.
Free electron model was used by Landau to calculate the orbital diamagnetism of
conduction electrons. The result is:

XL = —Npotts/2ksTr

exactly one third of the Pauli susceptibility,and opposite in sign.

The real band structure is taken into account in an approximate way by renormalizing the
electron mass. Replace m_ by an effective mass m*

Then L = -(1/3)(m /m*) ¥

In some semimetals such as graphite or bismuth, m* can be = 0.01 m_, hence the
diamagnetism of the conduction electrons may sometimes be the dominant contribution to

the susceptibility. (x, = -4 10-* for graphite)
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Susceptibility of electrons; summary

02 20510 1

~ 3
>
g 10x10*
o 3
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3 3
%38 200 300 0100 200 300
Tormperature, T (K) Tomperature, T (K)
Curie Pauli

.........................

Tormporature, 7 (K)

Landau
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Density of states in other dimension

3-d solid 15(8) x €1

_"/-/ / 7 € ) = constant
\ ey o £

(€) Discreet levels

Confinement of the
free-electron gas: (a) in
two dimensions, (b) in one
dimension ~ a quantum
wire, and (c) in zero
dimensions - a quantum
dot.
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Spin-Orbit Coupling

Spin and angular momentum coupled to create total angular

................. B,h"”...""-. momentum .i l =]+s j s
:._.' -,... m = Yj
. mt € '

" From the electron’ s point of view, the nucleus revolves
round it with speed v = current loop. It is a relativistic effect

| = Zev/2mr
which produces a magnetic field uy//2r at the centre

B, = uoZev/idnr: [~10T for B or C]
=-mB E,=-ugB

SO

= 274/ 470 3
Since r = ay/Z and mr=h Ego = -Uoltg™ZL /4may

The spin — orbit Hamiltonian for a single electron is of the form:
in general #_ = (1/2m 2c2r)dV/dr Ls

HSO :)\‘i'g

Here the two hs have been assimilated into A, making it an energy (c.f. exchange)
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Orbital angular momentum

The orbital angular momentum operators also satisfy the commutation rules:

Z

Ix1=1hl and [RL]=0
Spherical polar coordinates Electron -e
s
X = r sin0 cos¢
y=r sin@ Sinq) Nucleus Ze -

Z = r cosfO

I=rxp=—ih(yd/dz —z0/0y)ex —1h(z0/dx —xd/dz)e, —1h(xd/dy — yd/dx)e;.

?

I. = ih(singd/d0 + cot O cos pd /),

I, = ih(—cospd/d0 + cot@sin pd /),

I. = —ihk(d/8¢).

2 .2 .2 =2 o 0% a 1 8%

I =1_+1 l.z—r'u 5 ot @ » 3 3
= Ty T L ’ (ao- iy sin”98¢>”)
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5. The Single-electron Atom
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Orbital angular momentum operators

Eigenvalues of I*:

| is the orbital angular momentum quantum number

I(I+1)h? z
| =1 case S ’{
- h
m,= 1,0, -1 corresponds to the eigenvectors 1 0 0 i
0 1 0 V(D] 7
0 0 1
I,, 1, and I, operators can be represented by the matrices:
0 1//2 0 0 —if/V2 0 1 0 O
1/vV/2 0 1/v/2 | A | i/v/2 0O —i/v/2 | K| 0O 0O O |h
0 1/vV2 0 0 i/V2 0 0 0 -1
where 5 1 00
I'=]01:0]26
0 0 1
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Solution of Schrodinger’s equation

Schrodinger’s equation:

’Hw,- — €i¢i:

(o 20 1 p Z€ ] — e . _ —Zme' _ —ZR

2me \Or:  ror h*r2 dmegr| ' ks " Begh*n? n?
Satisfied by the wavefunctions: U(r,0,¢) = R(r)0(0)P(¢)
Where: R(r) = VY Zr /nae) exp|—(Zr /nao)] (V,| are Laguerre polynomials V°=1)
And the combined angular parts are Y, (0, ¢) x P (8)e' ™2, (Legendre polynomials)

Normalized spherical harmonics:
Yy = _\_/77!_[43 e
Y = \/3/-1::(\-;30 Vi = 4,/3/8xsinf exp(Lig)

YD = y_’é_/_l_ér_r(l.’.cce:O -~ 1) )':z'" = t@;’SRRiROMO(?Xp[ifé)
Y = J/T/16m(5c08® 8 — 3cosf) Y;'' = +./21/64%(5cos” @ — 1) sin O exp(Lig)

50 = /15/32x sin” 0 exp(+2i9) R
Yi< = \,/105/3‘217 sin® @ cosf exp(£2i9) V5" = £/35/647 sin® 0 exp(£3i¢)

AT AN @
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One-electron hydrogenic states

The three quantum number n,I m, " : M m No of states

denote an orbital.

Orbitals are denoted nx_, Is ! 0 0 +172 2
x=s,p,d,f.for1=0,12,3,. 28 |2 |0 |0 12 |2
2p 2 1 0,1 +1/2 6
Each orbital can accommodate at 3s 3 0 0 +1/2 2
most two electrons™ (m;=x1/2) 3p 3 1 0,21 112 |6
3d 3 2 0£1,+2 |x1/2 |10
4s 4 0 0 +1/2 2
4p 4 1 0,+1 +1/2 6
4d 4 2 0,£1,+2 +1/2 10
4f 4 3 041,423 |+1/2 |14

*The Pauli exclusion principle: No two electrons can have the same four quantum numbers.
=> Two electrons in the same orbital must have opposite spin.
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Single-electron orbitals

d electrons

s electrons l P electrons

m,=0 m=0 m=1

P?| R, (o) I?
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6. The Multi-electron Atom
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The many-electron atom

’}(0 o~ Z[—(h;’/?mc)V? - 282/471'607‘,'] e 262/477607',5_

$ <]

n|112|13 4|56

1372'8/5‘5/ 5153 85‘
_ ?p‘3p 47/5 : 6p
aslid 6

4 / !

3d 4d

4

Hartree-Fock approximation |
* No longer a simple Coulomb potential. | 471 of | 6F

* [ degeneracy is lifted. . "9 69

* Solution: Suppose that each electron experiences the
potential of a different spherically-symmetric potential.
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Ao ) H
H Magnetism of free atoms
1.00

. (em~ )

— Atomic Number  — 66Dy <— Atomic symbol o ) 7 g Yo

3Li 1625 f+— Atomic weight B N o F
6.94 Typical ionic change ~ —>1 3 + 4P 1081 1401 16.00 19.00
| +2s° Antiferromagnetic T(K)  — Ferromagnetic T(K)

——— TP
IINa I3A| ISP IGS I7C|
22.99 26.98 30.97 32.07 35.45
| +3s° 3+ 2pf

TR - A e
9K 21sc 122Ti T3V ) BiGa | BAs 34Se [Br
38.21 44.96 47.88 50.94 55.85 58.93 69.72 74.92 78.96 79.90
| + 4s° 3+3d° |4+3d 3 +3d? 3+3d°  2+3d 3+3d'°

1043 1390

s $ \ A A y, * < \ A A
3’Rb 39y Y4Zr V*'Nb ) “In [ Yish [52Te 1531
85.47 8891 91.22 9291 114.8 121.8 127.6 126.9
| + 550 2+4d° | 4+4d° |5+4d 3+4d'°

N $ \ A A y, " $ /
5Cs La |2Hf |*Ta "Re [7%0s |7Ir BT [rs BB
132.9 138.9 1785 180.9 186.2 190.2 192.2 195.1 197.0 204 4 209.0
| + 6s° 3+ 4f° 4:1e____5d° 5 + 5d° 4+ 54° 3 + 5d° 4 + 5¢° 2 + 548 | +5d'0 3 +5d'°

\
8Fr ¥ Ac
223 227.0
e (8 59 %0
L Ce |”’Pr |*°Nd
140.1 140.9 144.2
4 + 4f° 3 +4f 3+4f
a5
0Th °'Pa P2U
232.0 231.0 238.0 238 0
w | 4+ 50 5+ 50 4 + 5 5+ 50
A
:] Nonmetal Dlamagnet - Ferromagnet T > 290K
: Metal ' | Paramagnet D Antiferromagnet with Ty, > 290K
Radioactive BOLD | Magnetic atom G Antiferromagnet/Ferromagnet with T /T <290 K
| I: I: E ANnfan r'l Qar

79 out of the 103 first elements are magnetic as free atoms Moments << Zu,



Addition of angular momenta

First add the orbital and spin momenta [ and s, to form L
and S.Then couple them to give the total |

J=L+S$ |L-S| <] <|L+S]

L Different J-states are termed multiplets, denoted by;

25+ Xj

, X=S,PDF.. for L=0,1,23,...
Hund s rules

To determine the ground-state of a multi-electron atom/ion.
1) Maximize S
2) Maximize L consistent with S.
3) Couple L and S to form J.
e Less than half full shell J=L-S
e More than half full shell J=L+S
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Hund’ s rules; examples

Fe3t 3d°
S=52 L=0 J=5/2 AN RN
655/2 2 1 0 -1 -2

Note; Maximizing S is equivalent to maximizing M, = Zm,, since

M. <S

Si?
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Co?* 3d’

S=32 L=3 |]=9/2 K

4
I:9/2

Note; Maximizing L is equivalent to maximizing M, = Zm,, since
M <L
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2+ 8
NI 3d INDE
S=1 L=3 J=4 Vi)Y
2 | 0 -1 -2

3|:4
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Ce3+ 4fI !

S=1/2 L=3 J=5/2 32 1 0 -1 -2 -3

2
I:5/2
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Nd3* 4f3 (MR

| 2 -3
S=32 L=6 |=9/2 3 2 0

92
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Dy3* 4f
S=52 L=5

6
I_|I5/2

=152
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Hund’s rules 3d and 4f

©

‘J’

UL P P S D PR

eI

Ce

L REERN | L J o s
Pr Nd Pm Sm Eu

L) . Ll L
Ho Er Tm Yb Lu
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Spin-Orbit Coupling

A > 0 for the Ist half of the 3d or 4f series.

A < 0 for the 2nd half of the 3d or 4f series. (for Hund’s 3rd rule)

Compare single-electron atom case: 7/ = AlLs

A==+ A2S

L.S = (1/2)(J2- L2- 82 = (F12)[J(J+ 1)-L(L+1)-S(S+ )]

I, =AL.S A Is atomic the spin-orbit coupling constant

ion | A(K)
3d' | Tt | 124
3d? | Ti** 88
3d3 | V2 82
3d4 | Cr?* 85
3d% | Fe** | -164
3d” | Co?* | -272
3d® | Ni#* | -493




Zeeman Interaction

The magnetic moment of an ion is represented by the expression 722 = - (L + 28)ug/h

The Zeeman Hamiltonian for the magnetic moment in a field B along e, is =-m.B

Zeeman

ﬂZeeman = (HB/h)(Lz + 2Sz)Bz

For a particular J-multiplet the matrix elements of L + 2§ are proportional to those of J (Wigner
Eckart theorem)

(LSIM| L + 28 |LSJM)) = g(LS|M,| J [LSJM)) g, is the Landé g-factor

M =]

7712 - gjlz“B/ h ‘3::-;-’ ....

H geeman = g)-B1g/N) |
eeman J-, MJ =-j

j_[Zeeman‘PLSJM = g HugMB P gm
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Landé g-factor

The vector model of the atom, including
magnetic moments. First project 772 onto J. z

J then precesses around z. <

The g-factor for the atom or ion is the ratio of
the component of magnetic moment along J in
units of pg to the magnitude of the angular

momentum in units of 7.

gJ = (L + 2S) Take scalar product with J
g = -(MJlug)/(P11) = -m2)(lug) [0 + 1)]

but ) = -(ug/{(L + 2S).(L + S)} yP=Jjg+nhnz ), =Mn
~(ug/A){(L? + 3L.S + 28?)}
~(ug/P){(L2 + 282 + (3/2)(J2 - L2 - §?)} since J2=L2+S> +2 LS
-(He/M{((372))* — (172)L* + (1/2)$%)}
-(He/M{((3712))( + 1) = (1712)L(L + 1) + (1/2)S(S + 1)}

hence

g = 3/2 + {S(S+I) - L(L+1)}/2J(J+1) Check;gs =2 ,g,=|

IEEE Santander 2017



Co?* free ion
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Paramagnetic susceptibility - Brillouin theory

C is Curie’s constant.
Curielaw | X=C/T Units: Kelvin, K.

Typical values ~ |K Y. m; exp(—ei/kgT)
The thermodynamic average of the moment: (m) = S . exp(—ei/kgT)
B =B, - >0, —eupMs(1 — pogupM H/kpT)
E=-mB <m:>= Z./ (1
_ (1 — pogupMyH/kpT)

Using the identities:

J J J
S 1=2J+1; > M;=0 > M3 = J(J+1)(2J +1)/3,
oy =7 =
and the factthat x =n{m yH (n is the number density of atoms/ions)
we find C= f‘U"’ggll%LJ('] +1) . X = pghmg#ug® / 3kgT
3 .-.B
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Energy levels of an ion with J = 5/2 in an applied field
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3d ions

Table 4.7. ™he M o masr 15 In unils of 4,
.‘- ~-
r o JHTEN 2 JSEST w7

e L ey

1 3wt M $1 2 § | 188 L7 Ly
3 e v 1 3 2 § - 25 25
3 .o 43 § & o Ay N
4 . Ma™ 2 2 0 4% a9
s MUR" | 0 | 2 swm s 59
¢ FROG" 2 2 4 | &n 490 s4
T N ] Y 1t e i as
L NP Il 8 J I3 25 32
L = § 2 § | 3 1.7 19

S is a good quantum number

L is ‘quenched’
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Magnetization curve - Brillouin theory

To calculate the complete magnetization curve, set y = guguoH/kgT,
then
(m)=gug 0/0y[InZ Jexp{Myy} [d(In z)/dy = (1/z) dz/dy]

The sum over the energy levels must be evaluated; it can be written as
exp(Jy) {I +r+r2+ ... r2l} where r = exp{-y}
The sum of a geometric progression (I + r + r2+ ...+ ") = (r"*!' - D)/(r - 1)

. 2 Jexp{My} = (exp{-(2J+1)y} - exp{ly}/(exp{-y}-I)

multiply top and bottom by exp{y/2}
= [sinh(2)+1)y/2]/[sinh y/2]
(m) = gug(d/ 3 y)In{[sinh(2)+1)y/2]/[sinh y/2]}
= gup/2 {(2J+1)coth(2)+1)y/2 - coth y/2}
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Paramagnetism - Brillouin theory

setting X = Jy, we obtain

(m;) = mpB5;(x)

where Z(x) is the Brillouin function { }

2J + 1 2J + 1 ] X
(m:):mO - :

— — — —

This reduces to (m ) = pg tanh(x) in the limit | = Y2, g = 2.
and (m ) = £(x) is the Langevin function {coth x - 1/x} in the large-] limit.
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Magnetization curves for paramagnetic ions
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Comeparison of the Brillouin functions for s = '2, | = 2 and the Langevin function (] = «)
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Experimental confirmation
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Reduced magnetization curves of three paramagnetic salts, compared with Brillouin
function predictions
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Mean field theory of ferromagnetism

Weiss (1907) supposed that in addition to any externally applied field H, there is an
internal ‘molecular’ field in a ferromagnet proportional to its magnetization.

H =n, M

H' must be immense in a ferromagnet like iron to be able to induce a significant fraction of
saturation at room temperature; ny, =10 - 1000.The origin of these huge fields remained
a mystery until Heisenberg introduced the idea of the exchange interaction in 1928.

Magnetization is given by the Brillouin function,

<m> = m By(x)
where now x = yymH/k,T.

The magnetization at zero temperature, M, = Nm where m = gugJ. At nonzero
temperature M, = N<m>
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Mean field theory of ferromagnetism

In zero external field, we have ~ M /M, = B(x) (D)
Also by eliminating H' from the expressions for H' (H' = n,M,) and x (H' = kgTx/pym); since My= Nm

MJIM, = (NkgT/poMy*nyy)x
which can be rewritten in terms of the Curie constant C = pyNg2ug?(J+1)/3kg

MJIM, = [T(+1)/3Cny]x (2)
The simultaneous solution of (1) and (2) is found graphically, or they can be solved numerically.

Graphical solution of (1) and (2)
to find the spontaneous
magnetization M_when T < T~
inbluefor T< T, T=Tcand T
> Te.

0 2 4 6 X

PY3P04 2017



Mean field theory of ferromagnetism

At the Curie temperature, the slope of (2) is equal to the slope at the origin of the Brillouin
function

For small x. B(x) = [(+1)/3]]x + ...

hence T = n,C i a7

where the Curie constant  C = p Ng2ug¥(J+1)/3kg. 08 <
In practice, T is used to determine n,.

D

M (T )M

0.4
together with the theoretical curve for S = '
from the mea field theory.The theoretical curve is
scaled to give correct values at either end.

S 0.6 \00
The spontaneous magnetization for nickel, = \\

0 0.2 0.4 0.6 0.8 1.0
TIT.
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Exchange

Heisenberg and Dirac explained the origin of magnetism in solids in terms of the exchange
interaction. It is short-range interaction, coupling the spins of nearest-neighbour atoms.

It is not due to magnetic dipolar interactions; those fields are ~ | T, and far too weak.

Nor is there any real ‘molecular field’ inside the sample. Since V.B = 0, it would be
observed outside as well.

It is due to interelectronic Coulomb interactions, subject to the symmetry constraints of
quantum mechanics.

Interatomic exchange H s = -2 J S

J>0; ferromagnetic interatomic interaction
J<0; antiferromagnetic interatomic interaction

Relation between Jand H A/ = -2(2JS)-S; = -poH' m; = -poH'gugS; = -pgnyyMgu,S,
Te = uoNn\wg2up2S(S+1)/3ky = 27 /S(S+1)/3kg

Number of nearest-neighbours in 2,
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Summary — so far

¢ Filled electronic shells are not magnetic (the spins are paired; m, = +1/2)
¢ Only partly-filled shells may possess a magnetic moment

¢ The magnetic moment is given by 72 = gug), where h) represents the total angular
momentum. For a given configuration the values of ] and g in the ground state are given by
Hund’ s rules

When the ion is embedded in a solid, the crystal field interaction is important. This is the
electrostatic Coulomb interaction of an ion with its surroundings.
The third point is modified:

¢ Orbital angular momentum for 3d ions is quenched. The spin only moment is 72 = gugS,
with g = 2.

¢ Magnetocrystalline anisotropy appears, making certain crystallographic axes easy directions
of magnetization.
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7. lons in Solids
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Energy scales

0.1 | K 10 100 I?OO I(|)4 I(|)5
0.0l 0.1 | meV 10 100 | eV 10
Spin-orbit
interaction 3d
E, E, U
IT Zeeman IT Zeeman E o T Intratomic
interaction.  interaction. Ligand-field exchange
of electron of atom interaction

J

Interatomic
exchange
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Magnitudes of the interactions

The Hamiltonian is now

TH = F o+ H + H + H,

Typical magnitudes of energy terms (in K)

oA

SO

H H,inlT
3d |1-510* |102-10° 104 1

4 (1-610° |1-510° =310 |1

HH .. must be considered before #/ . for 4f ions, and the converse for 3d ions. Hence | is a
good quantum number for 4f ions, but S is a good quantum number for 3d ions. The 4f
electrons are generally localized, and 3d electrons are localized in oxides and other ionic
compounds.
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Magnitudes of the interactions

z

e

Coulomb interactions |L,S)

spin-orbit interaction AL.S |J)

7,

ion | A Zeeman interaction gugB.JIh |M,)

3dt | Tt | 124 4F' | Ce* | 920

3d?2 | Tiz* 88 42 | Pre* | 540 Crystal field interaction [py(r)g.(r)dr

3d® | vz 82 47 | Nd3* | 430

3d¢ | Cr 85 4f5 | Sm3* | 350

3d® | Fez* |-164 478 | Th3* | -410

3d7 | Co?* | -272 4f° | Dy3* | -550 H H g H Hy

3d¢ | Niz+ |-493 | |4f0 [ Hosr | -780 ntT
a1 | e | 1170 | |39 | 1-510% | 102-108 104 1
42 | T3 | 1900 | [4F | 1-610° [1-510% | =3102 |1
413 | Yb3* | -4itAP sgntander 2017




3d and 4f compared

Co

As metallic atoms or
ions the transition
metals occupy one
third of the volume of
the rare earths.

0.25nm 0.36nm

Cobalt Al Gadolinium
0.4 4 Gd3* (105 pm)
l Gd

Dgya-Ga/2

1 i )
0 0.05 0,1 0,15 0.2 0,25 0O 005 0,1 0.15 0,2
r, nm r, nm
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LOCALIZED MAGNETISM
Integral number of 3d or 4f electrons
on the ion core; Integral number of unpaired spins;
Discreet energy levels.
correlations.

DELOCALIZED MAGNETISM
Nonintegral number of unpaired spins
per atom.

Spin-polarized energy bands with strong

Ni2* 3d® m= 2 pg Ni 3d%44s0¢6
o E
3d
W 7/

W= exp(-riag) T NV ¥ = exp(-ik.r)
Boltzmann statistics Fermi-Dirac statistics

4f metals localized electrons

4f compounds localized electrons

3d compounds localized/delocalized electrons

3d metals delocalized electrons.

Above the ferromagnetic Curie temperature, the moments do not disappear, they just become

disordered in a paramagnetic state when T >T.
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Oxides
Octahedral and

tetrahedral sites
are common in
transition metal
oxides and other
compounds.

Oxides are usually
insulating.
Structures are
based on dense-
packed O? arrays,
with cations in
interstitial sites.

Both have cubic
symmetry if
undistorted

Roee = (22 - = 58 prv Ree= (312)7 - I = 32 pm
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Cation radii

in oxides: low spin values are in parentheses.

4-fold pm 6-fold pm 6-fold pm 12-fold pm

tetrahedral octahedral octahedral substitutional

Mg?* 53 Cr4+ 3d? 55 Ti* 3d’ 67 Ca?* 134

Zn?* 60 Mn4+ 3d3 53 V3* 3d? 64 Sr2* 144

Al3* 42 Cr3+3d3 62 Ba?* 161

Fe3* 3d° 52 Mn?*+ 3d° 83 Mn3* 3d* 65 Pb2* 149
Fe2* 3d° 78 (61) Fe3* 3d° 64 Y3t 119
Co?* 3d’ 75 (65) Co3* 3d° 61 (56) Las* 136
Ni2* 3d® 69 Nis* 3d’ 60 Gd3* 122

The radius of the O?- anion is 140 pm

IEEE Santander 2017



Orbital moment quenching is a cubic crystal field

g
To demonstrate quenching of orbital angular momentum, consider the 2p states % !, !
correspondingto | = |, m; =0, +1.

(N = R(r) cos 6

! = R(r) sin 6 exp {1}
The functions are eigenstates in the central potential V (r) but they are not eigenstates of H_ ;. Suppose
the oxygens can be represented by point charges q at their centres, then for the octahedron,

H =V = D(x* +y* +7* - 3y2z2 -322x2 -3x2y?)

where D = eq/4me a®. But y*! are not eigenfunctions of V; e.g fp;"V ap,dV= d;, where i,j=-1,0, 1.

We seek linear combinations that are eigenfunctions, namely z :

P? = R(r)cos 6 =zR(r) = p, Ny
(AV2)@! + ¢y )= R’ (r)sinBcosd = yR(r) =p, ;/;
(IV2)(p! -y hH= R’ (r)sinBsing = xR(r) = p, Iy
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°q

The 2p eigenfunctions are degenerate in an undistorted cubic environment

P = R(r)cos 6 =zR(r) =p,
(AAV2)(W@' + )= R’ (r)sinOcosd = yR(1) = p,
(1V2)@! -¢p) = R’ (r)sinBsind = xR(r) = p,
Px Py P,

Note that the z-component of angular momentum; 1, = i%/d¢ is zero for these wavefunctions.
Hence the orbital angular momentum is quenched.

The same is true of the 3d eigenfunctions, which are

2
d, = (IN2)? - ?) = R’ (r)sin26sin2¢ = xyR(r) dy2_y2 d,
dyZ = (1/\/2)(1])1 -l = R’ (r)sinBcosBsing =~ yzR(r) t), orbitals
d =12 + ) = R’ (r)sinBcosOcosd = zxR(r)
dz2*= (1V2)(? + 1p )= R’(r)sin?0cos2¢ = (x2-y2)R(r) e, orbitals =
d, 2> 2=y = R’ (1)(3cos20 — 1) = (3z%1)R(r) d,dy, d,,

The 3d eigenfunctions split into a set of three and a set of two in an undistorted cubic environment

Notation, a or b denote a nondegenerate single-electron orbital, e a twofold degenerate orbital and ¢ a threefold degenerate orbital. Capital letters refer to multi-
electron states. a, A are nondegenerate and symmetric with respect to the principal axis of symmetry (the sign of the wavefunction is unchanged), b. B are
antisymmetric with respect to the principal axis (the sign of the wavefunction changes). Subscripts g and u indicate whether the wavefunction is symmetric or



Orbitals in a cubic crystal field

|=0 s orbital

‘o

n =2
| =1 p orbitals

n =3
| =2 d orbitals
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Orbitals in the crystal field
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Crystal-field theory regards the splitting of the 3d orbitals in octahedral oxygen, for example, as
an electrostatic interaction with neighbouring point charges (oxygen anions). In reality the 3d
and 2p orbitals of oxygen overlap to form a partially covalent bond.The oxygens bonding to the
3d metals are the ligands. The overlap is greater for the e, than the t,, orbitals in octahedral
coordination.

The overlap leads to mixed wavefunctions, producing bonding and antibonding orbitals, whose
splitting increases with overlap. The hybridized orbitals are

(I) = Oﬂp2p+ﬁlP3d
where a2+ 2= I.
For 3d ions the splitting is usually |- 2eV, with the ionic and covalent contributions being of
comparable magnitude

The spectrochemical series is the sequence of ligands in order of effectiveness at producing
crystal/ligand field splitting.

Br'<CI'<F'<OH<C0O?;<0?<H,0<NH;<SO?%*;<NO",<§*'<CN"
The bond is mostly ionic at the beginning of the series and covalent at the end.

Covalency is stronger in tetrahedral coordination but the crystal field splitting is
Aree = (3/5)A

oct
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Ligand field interaction
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One-electron energy diagrams o dy

.W €,
.8,
lﬁ !
4,.4,.4, VA,
I 259, E—— |
| 2% ¥
R E— !
A
A WSA aha.
m é L !
dopdy e,
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Lower symmetry
As the sise symmetry s reduced, the degeneracy of the one-clectron
energy levels is rased. For example, a tetragonal extension of the
octabedron along the z-axis will lower p, and raise p, and p . The effect
on the d-states is shown below. The degeneracy of the d-levels in
different symmetry is shown in the table,

/o
| omm———p S
— Illl&Q:x
o pa R
The effect of a tetragonal distortion of octahedral symmetry on the
one-electron energy levels.
The splitting of the 1-¢lectron levels : . Rhombohedral
in different symmetry : -

1

1,1,1

LLLL1

1,1,1,1,1,1,1
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The Jahn-Teller effect

IEEE Santander 2017

*A system with a single electron
(or hole) in a degenerate level
will tend to distort spontaneously.

*The effect is particularly strong
for d* and d° ions in octahedral
symmetry (Mn>*, Cu?") which can
lower their energy by distorting
the crystal environment- this is
the Jahn-Teller effect.

o[f the local strain 1s €, the energy
change is

O0E = -A€ + Bé2
where the first term 1s the crystal
field stabilization energy and the
second term is the increased
elastic energy.

*The Jahn-Teller distortion may
be static or dynamic.



High and low spin states

An ion is in a high spin state or a low spin state depending on whether the Coulomb interaction (
leading to Hund’ s first rule (maximize S) is greater than or less than the crystal field splitting A,

Conscer 2 34" on such as Fe’

al

. —b-t_.

U U
Ay l

' '.."‘.” . v = v

U, > A, givesa bighspin state, S=2eg FeCl, Uy <Ay pves » low-apin stae, 5 = 0 e g Pyrie FeS,
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Crystal Field Hamiltonian
Hep = fpo(’)¢cf(r)d3’-

Charge distribution of the ion potential created by the crystal

‘ch(")= f p(l‘) d3rl

4eg|r — r'| '

Here 1/|r — 7' can be expanded sphencal harmomacs using sphencal polar
coocdmstes r =(r. 0. ¢)and r' = (r' v &)

| ] & ax Fy\s =
D Yl Cor S (1Y, YR, ).
|f - "' f'.‘:«,(zk ’ l’('.) -}'.( , . l ¢ .( ¢'
Hence
£ o
Plrn0. @)= 3 3 iy Y. (0.¢)
L e
where

d'r

=T @

structural parameters |IEEE Santander 2017

A= / AN, &)
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The approximation made so far is terrible.It ignores the screening of the potential by the outer
shells of the 4f ion for example, and also the covalent contribution. But it captures the
symmetry of the problem. We proceed with it, but treat the crystal field coefficients as empirical
parameters.

It is useful to expand the charge distribution of a central 4f ion in terms of the 2"-pole
moments of the charge distribution,n = 2,4, 6

The quadrupole moment

0, = [ p,_,_,(r)(3cos"9 — l)rld3r.
The hexadecapole moment

Q4 = / P45(r)(35 cos* 8 — 30cos?0 + 3)yr*d’r,
The 64-pole moment

Q¢ = /p4f(l')(231 cos®® — 315cos* @ + 105 cos® 6 — 5)réd’r.

o d —
Rare earth W ) @ \'u %::)
quadrupole /= L,/
moments

(B f“@/@i O
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Single-ion anisotropy

Single-ion anisotropy is due to the electrostatic crystal field interaction + spin-orbit
interaction. The 4f charge distribution p, (r) interacts with the crystal field potential
¢p(r) to stabilizes some particular orbitals; spin-orbit interaction -AL.S then leads to
magnetic moment alignment along some specific directions in the crystal.

The leading term in the crystal field interaction is
ea = (1/2)Q2A53cos* 8 — 1),

where A,° is the uniaxial second-order crystal field parameter, which described the
electric field gradient created by the crystal which interacts with the 4f quadrupole
moment. Compare &, = K,sin?0

The crystal field interaction can be expressed in terms of angular momentum
operators, using the Wigner-Eckart theorem

’ -3 m £\ym
H"f = 2 : 2 : Bn On ’
n=(ﬁl.2.4.6m=-n../ \\

Stevens

chgeedficient: 2017 operators




Here B, = 0,(ry,) A} and 0 is different for each 4f ion, proportional to the 2"-pole
moment

Q, =2 0y(ry?) Q, =8 0(ry*) Qg = 16 O(ry)
A.M ~ v.. parameterises the crystal field produced by the lattice.

NB. Q, #O0for ] (orlL) 21
Q, #O0for](orlL)22
Q, #O0for](orlL)23

The Stevens operators are tabulated, as well as which ones feature in each point
symmetry

e.g. The leading term in any uniaxial site is the one in O,°
Ol — ). =i+l
The complete second order (uniaxial) cf Hamiltonian is

Her = Optias r[é%de St A305° ']



oo ( ©
© 000L00

Change dsinbutons of the rare-earth 0ns. Those with 3 positve quadiupole momert (0, > O) ke tysx
dstrgushed from those with 2 regatve guadnpoe moment (0, < 0) boid type. Note the quartershel charges,

£12 2972
eg N¢* | =97 +£372
£572
£712
'
£902 211
0
3;° < 0 a:o > O A2 <0
2850 Examples of aton
2> configurations th
positive and neg:
|IEEE Santander 2017 electric field grac
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The cf Hamiltonian for a site with cubic symmetry is

Hep = 04(r};)| 4308 + 5459059 | + 06 (r5,) [ 4208 — 214303

For 3d ions only the fourth-order terms exist; (I = 2)

For 3d ions the second-order term
Her = 02(r2,) 4209 + 4302
Is often simplified to #/ =DS2 Typically D < | K

Kramer s theorem

It follows from time-reversal symmetry that the cf energy levels of any ion with an odd
number of electrons, and therefore half-integral angular momentum, must be at least 2-fold
degenerate. These are the |iMJ) Kramers doublets.

When | is integral, there will be a |0) singlet (with no magnetic moment) and a series of
doublets.
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Summary 2

You should now know;

» Magnetism in solids is inextricably connected to angular momentum

> It arises from quantized spin and orbital angular momenta of the electrons

» Curie law paramagnetic susceptibility of localized electrons

» Pauli susceptibility of delocalized electrons

» Hund’s rules for calculating the ground state of a free ion

» Crystal fields in solids tend to quench orbital angilar momentum; spin
survives

» Magnetic anisotropy — sources and magnitudes.

» Magnetic exchange interactions

» Ferrromagnetic, ferrimagnetic and antiferromagnetic order.
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Energy scales

Room
temperature
0.1 | K 10 00 " |(Too |c|>4 |c‘)5
0.0l 0.1 | meV 10 100 | eV 10
N
Spin-orbit
interaction 3d
IT Zeeman IT Zeeman E o T Intratomic
interaction.  interaction. Ligand-field exchange
of electron of atom interaction (Hund’s
o j first rule)
Ems Magnetic dipolar teratomic

interactions

exchange
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